[1] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].
[2] H.R. Tabrizidooz and F. Hajiramezanali, “A numerical algorithm for determining time-dependent coefficient in a parabolic inverse problem using Legendre multiwavelet base,” Soft Comput. J., vol. 10, no. 2, pp. 110-123, 2022, doi: 10.22052/scj.2022.243311.1028 [In Persian].
[3] E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press,1980.
[4] H. Ramos, J. Vigo-Aguiar, S. Natesan, R. Garcia-Rubio, and M.A. Queiruga, “Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm,” J. Math. Chem., vol. 48, no. 1, pp. 38-54, 2010, doi: 10.1007/s10910-009-9625-2.
[5] L.B. Liu, G. Long, and Z. Cen, “A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition,” Numer. Algorithms, vol. 83, no. 2, pp. 719-739, 2020, doi: 10.1007/s11075-019-00700-2.
[6] L.B. Liu and X. Yang, “Convergence analysis of Richardson extrapolation for a quasilinear singularly perturbed problem with an integral boundary condition on an adaptive grid,” Appl. Math. Lett., vol. 115, p. 106976, 2021, doi: 10.1016/j.aml.2020.106976.
[7] M. Bisheh-Niasar and M. Arab Ameri, “Moving mesh non-standard finite difference method for non-linear heat transfer in a thin finite rod,” J. Appl. Comput. Mechanics, vol. 4, no. 3, pp. 161-166, 2018, doi: 10.22055/JACM.2017.22854.1141.
[8] M. Bagherpoorfard and A.R. Soheili, “A numerical method based on the moving mesh for the solving of a mathematical model of the avascular tumor growth,” Comput. Methods Differ. Equ., vol. 9, no. 2, pp. 327-346, 2021, doi: 10.22034/cmde.2020.31455.1472.
[9] W.E. Milne, Numerical solution of differential equations, New York, NY: John Wiley, 1953.
[10] H. Ramos and G.A. Singh, “A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs,” Appl. Math. Comput., vol. 310, pp. 75-88, 2017, doi: 10.1016/j.amc.2017.04.020.
[11] H. Ramos, “Development of a new Runge?Kutta method and its economical implementation,” Computat. Math. Methods, vol. 1, no. 2, 2019, doi: 10.1002/cmm4.1016.
[12] S.N. Jator and V. Manathunga, “Block Nystrom type integrator for Bratu’s equation,” J. Comput. Appl. Math., vol. 327, pp. 341-349, 2018, doi: 10.1016/j.cam.2017.06.025.
[13] M.I. Syam and M. Al-Refai, “A reliable method for first order delay equations based on the implicit hybrid method,” Alexandria Eng. J., vol. 59, no. 4, pp. 2677-2681, 2020, doi: 10.1016/j.aej.2020.04.043.
[14] T.A. Anake, “Continuous Implicit Hybrid One-step Methods for the Solution of Initial Value Problems of General Second-order Ordinary Differential Equations,” PhD thesis, Ota, Nigeria: Covenant University, 2011.
[15] J.D. Lambert, Computational methods in ordinary differential equations, London, UK, John Wiley and Sons, 1973.