[1] Beylkin G., “On wavelet-based algorithms for solving differential equations,” in Wavelets, pp. 449–466, CRC Press, 2021.
[2] Glowinski R., “Wavelet solution of linear and nonlinear elliptic,” Parabolic and Hyperbolic Problems in One Space Dimension, pp.1–79, 1989.
[3] Goswami J. C., Chan A. K., and Chui C. K., “On solving first-kind integral equations using wavelets on a bounded interval,” IEEE Transactions on antennas and propagation, 43(6): 614–622, 1995.
[4] Dahmen W., Kunoth A., and Urban K., “A wavelet Galerkin method for the Stokes equations,” Computing, 56(3): 259–301, 1996.
[5] Lin E. and Zhou X., “Connection coefficients on an interval and wavelet solutions of Burgers equation,” Journal of computational and applied mathematics, 135(1): 63–78, 2001.
[6] Xu J. -C. and Shann W. -C., “Galerkin-wavelet methods for two-point boundary value problems,” Numerische Mathematik, 63(1): 123–144, 1992.
[7] Alpert B. K., “A class of bases in L2 for the sparse representation of integral operators,” SIAM journal on Mathematical Analysis, 24(1): 246–262, 1993.
[8] Alpert B. K., Beylkin G., Gines D., and Vozovoi L., “Adaptive solution of partial differential equations in multiwavelet bases,” Journal of Computational Physics, 182(1): 149–190, 2002.
[9] Lakestani M., Saray B. N., and Dehghan M., “Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets,” Journal of Computational and Applied Mathematics, 235(11): 3291–3303, 2011.
[10] Shamsi M. and Razzaghi M., “Solution of Hallen’s integral equation using multiwavelets,” Computer Physics Communications, 168(3): 187–197, 2005.
[11] Zhou X., “Legendre multiwavelet Galerkin methods for differential equations,” Journal of applied mathematics and informatics, 32(12): 267–284, 2014.
[12] شیخان م.، عباسی ع.، «راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکههای کامپیوتری با استفاده از الگوریتمهای هوش محاسباتی»، مجله محاسبات نرم، جلد 6، شماره 1، ص.48-65، 1396.
[13] محمدپور م.، مینایی بیدگلی ب.، پروین ح.، «ارائه یک الگوریتم فرااکتشافی جدید مبتنی بر رفتار پرنده تیهو برای حل مسائل بهینهسازی پویا»، مجله محاسبات نرم، جلد 8، شماره 2، ص.38-65، 1398.
[14] خسروی ا.، عبدالمالکی ه.، فیاضی م.، «پیشبینی وضعیت تحصیلی متقاضیان پذیرششده دانشگاه، مبتنی بر دادههای آموزشی و پذیرشی با استفاده از تکنیکهای داده کاوی»، مجله محاسبات نرم، جلد 9، شماره 2، ص.94-113، 1399.
[15] ویسی ه.، قایدشرف ح.، ابراهیمی م.، «بهبود کارایی الگوریتمهای یادگیری ماشین در تشخیص بیماریهای قلبی با بهینهسازی دادهها و ویژگیها»، مجله محاسبات نرم، جلد 8، شماره 1، ص.70-85، 1398.
[16] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A., Spectral methods: fundamentals in single domains, Springer Science and Business Media, 2007.
[17] Saadatmandi A. and Dehghan M., “Numerical solution of the one-dimensional wave equation with an integral condition,” Numerical Methods for Partial Differential Equations: An International Journal, 23(2): 282–292, 2007.
[18] Abbas Z., Vahdati S., Atan K., and Long N. N., “Legendre multi-wavelets direct method for linear integro-differential equations,” Applied Mathematical Sciences, 3(14): 693–700, 2009.
[19] Khellat F. and Yousefi S. A., “The linear legendre mother wavelets operational matrix of integration and its application,” Journal of the Franklin Institute, 343(2): 181–190, 2006.
[20] Rivlin T. J., An introduction to the approximation of functions, Courier Corporation, 1981.
[21] Ueda M. and Lodha S., Wavelets: An elementary introduction and examples, University of California, Santa Cruz, US, 1995.
[22] Cannon J. R. and Rundell W., “Recovering a time dependent coefficient in a parabolic differential equation,” Journal of Mathematical Analysis and Applications, 160(2): 572–582, 1991.
[23] MacBain J. A. and Bednar J. B., “Existence and uniqueness properties for the one-dimensional magnetotellurics inversion problem,” Journal of mathematical physics, 27(2): 645–649, 1986.
[24] Shamsi M. and Dehghan M., “Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral legendre method,” Numerical Methods for Partial Differential Equations: An International Journal, 23(1): 196–210, 2007.
[25] Thapa N., “On the numerical solution of coefficient identification problem in heat equation,” Applied Mathematical Sciences, 8(122): 6081–6092, 2014.
[26] Dehghan M., “Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement,” Numerical Methods for Partial Differential Equations: An International Journal, 21(3): 611–622, 2005.
[27] Saadatmand A. and Dehghan M., “A method based on the tau approach for the identification of a time-dependent coefficient in the heat equation subject to an extra measurement,” Journal of Vibration and Control, 18(8): 1125–1132, 2012.
[28] Dehghan M., “A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications,” Numerical Methods for Partial Differential Equations: An International Journal, 22(1): 220–257, 2006.