[1] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge, U.K.: Cambridge Univ. Press, 2016, doi: 10.1017/9781316771273.
[2] B. Beizer, Software Testing Techniques. New York, NY, USA: Van Nostrand Reinhold, 1990.
[3] H. Farzaneh, S. Bakhshayeshi, R. Ebrahimi Atani, and A. Shahbahrami, “A survey on test data generation techniques based on Mutation Testing,” Soft Comput. J., vol. 2, no. 1, pp. 72-85, 2013, dor: 20.1001.1.23223707.1392.2.1.61.5 [In Persian].
[4] Y.-W. Wang, Y. Xing, and X.-Z. Zhang, “A method of path feasibility judgment based on symbolic execution and range analysis,” Int. J. Future Gener. Commun. Netw., vol. 7, no. 3, pp. 205-212, 2014, doi: 10.14257/ijfgcn.2014.7.3.19.
[5] H. Zhu, D. Jin, Y. Gong, Y. Xing, and M. Zhou, “Detecting interprocedural infeasible paths based on unsatisfiable path constraint patterns,” IEEE Access, vol. 7, pp. 15040-15055, 2019, doi: 10.1109/ACCESS.2019.2894593.
[6] S. Jiang et al., “An approach for detecting infeasible paths based on a SMT solver,” IEEE Access, vol. 7, pp. 69058-69069, 2019, doi: 10.1109/ACCESS.2019.2918558.
[7] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” in Proc. Int. Conf. Tools Algorithms Constr. Anal. Syst., 2008, pp. 337-340, doi: 10.1007/978-3-540-78800-3_24.
[8] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model Checking, Springer, 2018, pp. 305-343, doi: 10.1007/978-3-319-10575-8_11.
[9] M. Balunovic, P. Bielik, and M. Vechev, “Learning to solve SMT formulas,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.
[10] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compositional symbolic execution,” in Proc. Int. Conf. Tools Algorithms Constr. Anal. Syst., 2008, pp. 367-381, doi: 10.1007/978-3-540-78800-3_28.
[11] J. Scott, F. Mora, and V. Ganesh, “BanditFuzz: Fuzzing SMT solvers with reinforcement learning,” University of Waterloo, Waterloo Research, 2020.
[12] S. Jeon and J. Moon, “Dr. PathFinder: Hybrid fuzzing with deep reinforcement concolic execution toward deeper path-first search,” Neural Comput. Appl., vol. 34, pp. 10731-10750, 2022, doi: 10.1007/s00521-022-07008-8.
[13] M. Hajibaba and S. Parsa, “Software Fault Localization using Cross Entropy and N-gram Models,” Soft Comput. J., vol. 2, no. 1, pp. 44-59, 2013, dor: 20.1001.1.23223707.1392.2.1.59.3 [In Persian].
[14] S. Ding, H.B.K. Tan, and K.P. Liu, “A survey of infeasible path detection,” in Proc. 7th Int. Conf. Eval. Novel Approaches Softw. Eng. (ENASE), 2012, pp. 43-52.
[15] S. Jang, H.-Y. Kim, Y.-H. Choi, and T.-M. Chung, “A study of advanced hybrid execution using reverse traversal,” in Proc. 2011 Int. Conf. Inf. Manag. Innov. Manag. Ind. Eng., vol. 2, 2011, pp. 557-559, doi: 10.1109/ICIII.2011.278.
[16] H. Ghorbani Moghadam, B. Jamasb, and H. Dehdashti Jahromi, “Review on security requirements in the software production process,” Soft Comput. J., vol. 10, no. 2, pp. 72-83, 2022, doi: 10.22052/scj.2022.242857.0 [In Persian]
[17] B. Barhoush and I. Alsmadi, “Infeasible paths detection using static analysis,” Res. Bull. Jordan ACM, vol. 2, no. 3, pp. 120-126, 2013.
[18] N. Malevris, D. Yates, and A. Veevers, “Predictive metric for likely feasibility of program paths,” Inf. Softw. Technol., vol. 32, no. 2, pp. 115-118, 1990, doi: 10.1016/0950-5849(90)90110-D.
[19] D. Yates and N. Malevris, “Reducing the effects of infeasible paths in branch testing,” ACM SIGSOFT Softw. Eng. Notes, vol. 14, no. 8, pp. 48-54, 1989, doi: 10.1145/75309.75315.
[20] SMT-LIB, Accessed: Feb. 6, 2022, [Online]. Available: https://smtlib.cs.uiowa.edu/.
[21] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction. London, U.K.: The MIT Press, 2018.
[22] E.J. Weyuker, “The applicability of program schema results to programs,” Int. J. Comput. Inf. Sci., vol. 8, no. 5, pp. 387-403, 1979, doi: 10.1007/BF00995175.
[23] D. Gong and X. Yao, “Automatic detection of infeasible paths in software testing,” IET Softw., vol. 4, no. 5, pp. 361-370, 2010, doi: 10.1049/iet-sen.2009.0092.
[24] D. Kundu, M. Sarma, and D. Samanta, “A UML model-based approach to detect infeasible paths,” J. Syst. Softw., vol. 107, pp. 71-92, 2015, doi: 10.1016/j.jss.2015.05.007.
[25] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, “OpenAI Gym,” arXiv preprint, arXiv:1606.01540, 2016.
[26] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, pp. 529-533, 2015, doi: 10.1038/nature14236.