[1] Y. Bang, H.S. Abdel-Khalik, and J.M. Hite, “Hybrid reduced order modeling applied to nonlinear models,” Int. J. Numer. Meth. Eng., vol. 91, no. 9, pp. 929-949, 2012, doi: 10.1002/nme.4298.
[2] S. Afzali, M.K. Moayyedi, and F. Fotouhi, “Development of an equation-free reduced-order model based on different feature extraction patterns on the two-dimensional steady-state heat transfer dataset,” Soft Comput. J., vol. 10, no. 1, pp. 16-31, 2021, doi: 10.22052/scj.2021.242830.0 [In Persian].
[3] Y.C. Liang, H.P. Lee, S.P. Lim, W.Z. Lin, K.H. Lee, and C.G. Wu, “Proper orthogonal decomposition and its applications-Part I: Theory,” J. Sound Vib., vol. 252, pp. 527-544, 2002, doi: 10.1006/jsvi.2001.4041.
[4] J.E. Higham, M. Shahnam, and A. Vaidheeswaran, “Using a proper orthogonal decomposition to elucidate features in granular flows,” Granul. Matter, vol. 22, pp. 1-13, 2020, doi: 10.1007/s10035-020-01037-7.
[5] M.K. Moayyedi and F. Sabaghzadeghan, “Development of parametric and time dependent reduced order model for diffusion and convection-diffusion problems based on proper orthogonal decomposition,” Amirkabir J. Mech. Eng., vol. 53, no. 7, pp. 4241-4241, 2021, doi: 10.22060/mej.2020.16939.6483 [In Persian].
[6] W.S. Edwards, S. Laurette, S. Tuckerman, R.A. Friesner, and D.C. Sorensen, “Krylov methods for the incompressible Navier-Stokes equations,” J. Comput. Phys., vol. 110, no. 1, pp. 82-102, 1994.
[7] R.B. Lehoucq and J.A. Scott, “Implicitly restarted Arnoldi methods and subspace iteration,” SIAM J. Matrix Anal. Appl., vol. 23, no. 2, pp. 551-562, 1997.
[8] P.J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., vol. 656, pp. 5-28, 2010, doi: 10.1017/s0022112010001217.
[9] P.J. Schmid, “Dynamic Mode Decomposition and Its Variants,” Annu. Rev. Fluid Mech., vol. 54, pp. 225-254, 2022, doi: 10.1146/annurev-fluid-030121-015835.
[10] S.E. Ahmed, P.H. Dabaghian, O. San, D.A. Bistrian, and I.M. Novan, “Dynamic mode decomposition with core sketch,” Phys. Fluids, vol. 34, no. 6, p. 066603, 2022, doi: 10.1063/5.0095163.
[11] T. Krake, D. Klotzl, D. Eberhardt, and D. Weiskopf, “Constrained Dynamic Mode Decomposition,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 1, pp. 182-192, 2022, doi: 10.1109/TVCG.2022.3209437.
[12] P.J. Baddoo, B. Hermann, B.J. Mckeon, J.N. Kutz, and S.L. Brunton, “Physics-informed dynamic mode decomposition,” Proc. Royal Soc. A, vol. 479, no. 2271, 2023, doi: 10.1098/rspa.2022.0576.
[13] C. Hu et al., “Numerical investigation of centrifugal compressor stall with compressed dynamic mode decomposition,” Aerosp. Sci. Technol., vol. 106, p. 106153, 2020, doi: 10.1016/j.ast.2020.106153.
[14] C. Sun, T. Tian, X. Zu, O. Hua, and Z. Du, “Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition,” Energy, vol. 227, p. 120418, 2021, doi: 10.1016/j.energy.2021.120418.
[15] M.K. Moayyedi, F. Bigdeloo, and F. Sabaghzadeghan, “Stabilization of Reduced Order Model for Convection-Diffusion Problems Based on Dynamic Mode Decomposition at High Reynolds Numbers Using Eddy Viscosity Approach,” Amirkabir J. Mech. Eng., vol. 54, no. 11, pp. 2479-2498, 2023, doi: 10.22060/MEJ.2022.20801.732 [In Persian].
[16] M.K. Moayyedi, Z. Khakzari, and F. Sabaghzadeghan, “Study of the Effect of Eddy Viscosity Closure in Calibration of the DMD Based Reduced-order Model to Predict the Long-Term Behavior of Convection-Diffusion Equations,” Fluid Mech. Aerodyn., vol. 11, no. 1, pp. 83-96, 2022, dor: 20.1001.1.23223278.1401.11.1.6.8 [In Persian].
[17] F. Sabaghzadeghan, “Development of the Reduced Order Model for Convection-Diffusion and Diffusion Problems Based on Proper Orthogonal Decomposition and Dynamic Mode Decomposition,” M.S. thesis, Dept. Mech. Eng., Univ. Qom, Qom, Iran, 2019 [In Persian].
[18] Z.F. Tian and P.X. Yu, “A high-order exponential scheme for solving 1D unsteady convection–diffusion equations,” J. Comput. Appl. Math., vol. 235, pp. 2477-2491, 2011, doi: 10.1016/j.cam.2010.11.001.
[19] C.W. Rowley, I. Mezic, S. Bagheri, P. Schlatter, and D.S. Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., vol. 641, pp. 115-127, 2009, doi: 10.1017/s0022112009992059.
[20] F. Sabaghzadeghan and M.K. Moayyedi, “Reduced Order Model of Conduction Heat Transfer in a Solid Plate Based on Dynamic Mode Decomposition,” Sharif J. Mech. Eng., vol. 37, no. 2, pp. 3-12, 2021, doi: 10.24200/j40.2021.55926.1555 [In Persian].