[1] S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved handwritten digit recognition using convolutional neural networks (CNN),” Sensors, vol. 20, no. 12, p. 3344, 2020, doi: 10.3390/s20123344.
[2] M.A. Hossain and M.M. Ali, “Recognition of handwritten digit using convolutional neural network (CNN),” Global J. Comput. Sci. Technol., vol. 19, no. 2, pp. 27-33, 2019.
[3] N. Jain, K. Rahul, I. Khamaru. A.K. Jha, and A. Ghosh, “HandWritten Digit Recognition using Convolutional Neural Network (CNN),” Int. J. Innov. Adv. Comput. Sci., vol. 6, no. 5, 2017.
[4] H.A. Alwzwazy, H.M. Albehadili, Y.S. Alwan, and N.E. Islam, “Handwritten digit recognition using convolutional neural networks,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 4, no. 2, pp. 1101-1106, 2016.
[5] E. Kussul and T. Baidyk, “Improved method of handwritten digit recognition tested on MNIST database,” Image Vis. Comput., vol. 22, no. 12, pp. 971-981, 2004, doi: 10.1016/j.imavis.2004.03.008.
[6] H. Wu, “CNN-Based Recognition of Handwritten Digits in MNIST Database,” Research School of Computer Science. The Australia National University, Canberra, 2018.
[7] R. Jana and S. Bhattacharyya, “Character recognition from handwritten image using convolutional neural networks,” in Recent Trends in Signal and Image Processing: Proceedings of ISSIP 2018, 2019: Springer, pp. 23-30, doi: 10.1007/978-981-13-6783-0_3.
[8] F. Siddique, S. Sakib and M.A.B. Siddique, “Recognition of Handwritten Digit using Convolutional Neural Network in Python with Tensorflow and Comparison of Performance for Various Hidden Layers,” in 5th Int. Conf. Adv. Electr. Eng. (ICAEE), Dhaka, Bangladesh, 2019, pp. 541-546, doi: 10.1109/ICAEE48663.2019.8975496.
[9] M.M. Abu Ghosh and A.Y. Maghari, “A Comparative Study on Handwriting Digit Recognition Using Neural Networks,” in Int. Conf. Promising Electron. Technol. (ICPET), Deir El-Balah, Palestine, 2017, pp. 77-81, doi: 10.1109/ICPET.2017.20.
[10] D.-Y. Ge, X.-F. Yao, W.-J. Xiang, X.-J. Wen and E.-C. Liu, “Design of High Accuracy Detector for MNIST Handwritten Digit Recognition Based on Convolutional Neural Network,” in 12th Int. Conf. Intell. Comput. Technol. Autom. (ICICTA), Xiangtan, China, 2019, pp. 658-662, doi: 10.1109/ICICTA49267.2019.00145.
[11] S. Ali, Z. Shaukat, M. Azeem, Z. Sakhawat, T. Mahmood, and K. ur Rehman, “An efficient and improved scheme for handwritten digit recognition based on convolutional neural network,” SN Appl. Sci., vol. 1, no. 9, p. 1125, 2019, doi: 10.1007/s42452-019-1161-5.
[12] A.-M. Saeed, “Intelligent handwritten digit recognition using artificial neural network,” Int. J. Eng. Res. Appl., vol. 5, no. 5, pp. 46-51, 2015.
[13] M. Ramprasath, M.V. Anand, and S. Hariharan, “Image classification using convolutional neural networks,” Int. J. Pure Appl. Math., vol. 119, no. 17, pp. 1307-1319, 2018.
[14] E. Tuba, M. Tuba, and D. Simian, “Handwritten Digit Recognition by Support Vector Machine Optimized by Bat Algorithm,” in 24th Conf. Comput. Graph. Visual. Comput. Vis., 2016, pp. 369-376.
[15] S. Ahlawat and A. Choudhary, “Hybrid CNN-SVM Classifier for Handwritten Digit Recognition,” Proc. Comput. Sci., vol. 167, pp. 2554-2560, 2020, doi: 10.1016/j.procs.2020.03.309
[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[17] A. Biswas and M.S. Islam, “An efficient CNN model for automated digital handwritten digit classification,” J. Inf. Syst. Eng. Business Intell., vol. 7, no. 1, pp. 42-55, 2021.
[18] X.-X. Niu and C.Y. Suen, “A novel hybrid CNN-SVM classifier for recognizing handwritten digits,” Pattern Recognit., vol. 45, no. 4, pp. 1318-1325, 2012, doi: 10.1016/j.patcog.2011.09.021.
[19] C. Kaensar, “A Comparative Study on Handwriting Digit Recognition Classifier Using Neural Network, Support Vector Machine and K- Nearest Neighbor,” in 9th Int. Conf. Comput. Inf. Technol. (AISC), 2013, pp. 155-163.
[20] R. Ebrahimzadeh and M. Jampour, “Efficient handwritten digit recognition based on histogram of oriented gradients and SVM,” Int. J. Comput. Appl., vol. 104, no. 9, 2014.
[21] B. El Qacimy, M.A. Kerroum, and A. Hammouch, “Feature extraction based on DCT for handwritten digit recognition,” Int. J. Comput. Sci. Issues (IJCSI), vol. 11, no. 6, p. 27, 2014.
[22] M. Sarchahi and E. Mahdipour, “Using ensemble deep learning to improve the accuracy of CT-Scan lung image detection of COVID-19 patients,” Soft Comput. J., vol. 13, no. 1, pp. 20-39, 2024, doi: 10.22052/scj.2023.253142.1158 [In Persian].
[23] M. Eftekharian and A. Nodehi, “Breast Cancer Diagnosis and Classification Improvement based on Deep Learning and image Processing methods,” Soft Comput. J., vol. 12, no .1, pp. 22-26, 2023, doi: 10.22052/scj.2023.246416.1067.
[24] M. Mousavi, S. Hosseini, and M.R. Omidi, “Improved Deep Neural Network Algorithm for Covid-19 Detection in Internet of Things,” Soft Comput. J., vol. 12, no. 2, pp. 54-71, 2024, doi: 10.22052/scj.2023.248686.1117 [In Persian].