[1] A. Mohebbi and Z. Asgari, “Efficient numerical algorithms for the solution of good Boussinesq equation in water wave propagation,” Comput. Phys. Commun., vol. 182, no. 12, pp. 2464-2470, 2011, doi: 10.1016/j.cpc.2011.07.004.
[2] A.M. Wazwaz, “Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method,” Chaos Solitons Fractals, vol. 12, no. 8, pp. 1549-1556, 2001, doi: 10.1016S0960-0779(00)00133-8.
[3] A. Shokri and M. Dehghan, “A Not-a-Knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation,” Comput. Phys. Commun., vol. 181, no. 12, pp. 1990-2000, 2010, doi: 10.1016/j.cpc.2010.08.035.
[4] A.G. Bratsos, “A second order numerical scheme for the solution of the one-dimensional Boussinesq equation,” Numer. Algorithms, vol. 46, no. 1, pp. 45-58, 2007, doi: 10.1007/s11075-007-9126-y.
[5] M.S. Ismail and F. Mosally, “A fourth order finite difference method for the good Boussinesq equation,” Abs. Appl. Anal., vol. 2014, no. 1, p. 323260, 2014, doi: 10.1155/2014/323260.
[6] Y. Ucar, A. Esen, and B. Karaagac, “Numerical solutions of Boussinesq equation using Galerkin finite element method,” Numer. Methods Partial Diff. Equ., vol. 37, no. 2, pp. 1612-1630, 2020, doi: 10.1002/num.22600.
[7] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer Berlin, Heidelberg, 2011, doi: 10.1007/978-3-540-71041-7.
[8] J. Shen, “A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KdV equation,” SIAM J. Numer. Anal., vol. 41, no. 5, pp. 1595-1619, 2003, doi: 10.1137/S0036142902410271.
[9] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, “The numerical solution of the two–dimensional sinh-Gordon equation via three meshless methods,” Eng. Anal. Bound. Elem., vol. 51, pp. 220-235, 2015, doi: 10.1016/j.enganabound.2014.10.015
[10] J.-M. Yuan, J. Shen, and J. Wu, “A Dual-Petrov-Galerkin Method for the Kawahara-Type Equations,” J. Sci. Comput., vol. 34, no. 1, pp. 48-63, 2008, doi: 10.1007/s10915-007-9158-4.