شبیه‌سازی عددی موج‌های بلند آب مدل‌سازی شده توسط معادله دیفرانسیل با مشتقات جزئی غیرخطی بوزینسک با استفاده از یک تقریب طیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی کاربردی، دانشکده علوم ریاضی، دانشگاه کاشان، کاشان، ایران.

چکیده

در این مقاله، روش گالرکین برای حل معادله دیفرانسیل جزئی غیرخطی بوزینسک که توصیف کننده امواج آب می‌باشد، ارائه می‌گردد. ایده اصلی استفاده از چندجمله‌ای‌های ژاکوبی تعمیم‌یافته به عنوان توابع پایه‌ای برای مشتقات مکانی به گونه‌ای می‌باشد که شرایط مرزی معادله را برآورده سازد. برای پرهیز از حل دستگاه معادلات غیرخطی، روش لیپ فراگ-کرانک نیکلسون برای گسسته‌سازی زمانی معادله پیشنهاد می‌گردد. تخمین خطای طرح پیشنهادی به صورت دقیق مورد بررسی قرار گرفته و نتایج عددی نشان‌دهنده دقت بالای روش و زمان محاسباتی پایین و موید نتایج نظری می‌باشد. همچنین نتایج حاصل نشان می‌دهد این روش برای معادلات دیفرانسیل جزئی غیرخطی و از مراتب زوج کارآمد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of water long waves modeled by nonlinear Boussinesq partial differential equation using a spectral approximation

نویسندگان [English]

  • Hoorieh Fakhari
  • Akbar Mohebbi
Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.
چکیده [English]

In this paper, the Galerkin method is proposed for the solution of the nonlinear Boussinesq partial differential equation describing water waves. The main idea is to use generalized Jacobi polynomials (GJPs) as basis functions to deal with spatial derivatives such that boundary conditions are satisfied. To avoid solving nonlinear equations, the Leap-frog and Crank-Nicolson method is proposed for time discretization of the equation. The error estimate of the proposed method is investigated and numerical results show the high accuracy and low CPU time of proposed method and confirmed the theoretical ones. Also, the obtained results show that the method is suitable for nonlinear and even-order partial differential equations. 

کلیدواژه‌ها [English]

  • Generalized Jacobi polynomials
  • Boussinesq equation
  • Galerkin method
  • Spectral method
  • Error equation
[1] A. Mohebbi and Z. Asgari, “Efficient numerical algorithms for the solution of good Boussinesq equation in water wave propagation,” Comput. Phys. Commun., vol. 182, no. 12, pp. 2464-2470, 2011, doi: 10.1016/j.cpc.2011.07.004.
[2] A.M. Wazwaz, “Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method,” Chaos Solitons Fractals, vol. 12, no. 8, pp. 1549-1556, 2001, doi: 10.1016S0960-0779(00)00133-8.
[3] A. Shokri and M. Dehghan, “A Not-a-Knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation,” Comput. Phys. Commun., vol. 181, no. 12, pp. 1990-2000, 2010, doi: 10.1016/j.cpc.2010.08.035.
[4] A.G. Bratsos, “A second order numerical scheme for the solution of the one-dimensional Boussinesq equation,” Numer. Algorithms, vol. 46, no. 1, pp. 45-58, 2007, doi: 10.1007/s11075-007-9126-y.
[5] M.S. Ismail and F. Mosally, “A fourth order finite difference method for the good Boussinesq equation,” Abs. Appl. Anal., vol. 2014, no. 1, p. 323260, 2014, doi: 10.1155/2014/323260.
[6] Y. Ucar, A. Esen, and B. Karaagac, “Numerical solutions of Boussinesq equation using Galerkin finite element method,” Numer. Methods Partial Diff. Equ., vol. 37, no. 2, pp. 1612-1630, 2020, doi: 10.1002/num.22600.
[7] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer Berlin, Heidelberg, 2011, doi: 10.1007/978-3-540-71041-7.
[8] J. Shen, “A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KdV equation,” SIAM J. Numer. Anal., vol. 41, no. 5, pp. 1595-1619, 2003, doi: 10.1137/S0036142902410271.
[9] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, “The numerical solution of the two–dimensional sinh-Gordon equation via three meshless methods,” Eng. Anal. Bound. Elem., vol. 51, pp. 220-235, 2015, doi: 10.1016/j.enganabound.2014.10.015
[10] J.-M. Yuan, J. Shen, and J. Wu, “A Dual-Petrov-Galerkin Method for the Kawahara-Type Equations,” J. Sci. Comput., vol. 34, no. 1, pp. 48-63, 2008, doi: 10.1007/s10915-007-9158-4.