مدل‌های عامل مبنا و کاربرد آن در بررسی خطرات انتقال بیماری‌ همه‌گیر

نوع مقاله : مقاله ترویجی

نویسندگان

گروه ریاضی کاربردی، دانشگاه پیام نور، تهران، ایران.

چکیده

بروز همه‌گیری کووید-19 در جهان، بار دیگر دولت‌ها و مسئولین محلی را با چالشی بزرگ و غیرمترقبه مواجه ساخت. بررسی همه جوانب این همه‌گیری، متخصصین رشته‌های مختلف و به خصوص ریاضی را به عرصه مبارزه با این چالش کشاند. در این بین، مدل‌سازی ریاضی انتقال بیماری به دلیل ماهیت ساده و قابل درک آن و نیز قابلیت اثبات شده آن در کمک به حل موضوعاتی از این دست، اهمیتی دوچندان یافت. مدل‌های مختلف ارایه شده برای بیماری‌های گوناگون، قدرت بررسی و پیشگیری از ایجاد همه‌گیری‌های خطرناک را افزایش می‌دهد. در این مقاله به کمک مدل‌سازی عامل مبنا، نحوه انتشار و انتقال بیماری‌های همه‌گیر (به ویژه در محیط‌های کوچک) را بررسی کرده‌ایم. در مدل بررسی شده، فرآیند انتقال مکانی-زمانی نیز برای هر عامل در نظر گرفته شده است. همچنین تصمیم‌گیری عوامل مورد بررسی، بر اساس قوانینی خواهد بود که برای آنها تهیه شده است. برای تعریف ویژگی‌های اجتماعی اصلی و همچنین شرایط سلامتی مورد استفاده در طول تعامل عوامل با یکدیگر، یک پروفایل فردی برای هر عامل در مدل پیش‌بینی می‌شود. به دلیل انعطاف خوبِ مدل بیان شده، شبیه‌سازی‌های عددی متفاوتی با آن به اجرا گذاشته شده است. از آنچه در این پژوهش به دست آمد می‌توان دریافت که برای کنترل و مقابله با بیماری‌های همه‌گیر و به خصوص در محیط‌های کوچک، چندین عامل باید به صورت جدی مورد توجه قرار گیرد که از آن جمله می‌توان به محدودیت جدی و شدید در جابه‌جایی‌های عوامل، تجمعات آنها و نیز رعایت دستورالعمل‌های بهداشتی و محافظتی (به عنوان مثال استفاده از ماسک و قرنطینه عوامل)، اشاره نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Agent-based models and their application in investigating the risks of epidemic disease transmission

نویسندگان [English]

  • Mahmood Dadkhah
  • Nazli Besharati
Department of Mathematics, Payame Noor University, Tehran, Iran.
چکیده [English]

The outbreak of the COVID-19 pandemic in the world once again faced the governments and local officials with a big and unexpected challenge. Examining all aspects of this epidemic brought experts from different fields, especially mathematics, into the field of fighting this challenge. In the meantime, mathematical modeling of disease transmission has gained double importance due to its simple and understandable nature as well as its proven ability to help solve such issues. Different models presented for different diseases increase the power of investigation and prevention of dangerous epidemics. In this article, with the help of agent-based models, we have investigated the spread and transmission of epidemic diseases (especially in small environments). In the reviewed model, the spatio-temporal transfer process is also considered for each agent. Also, the decision of the investigated agents will be based on the rules prepared for them. To define the main social characteristics as well as the health conditions used during the interaction of the agents with each other, an individual profile is predicted for each agent in the model. Due to the good flexibility of the stated model, different numerical simulations have been implemented with it. From what was obtained in this research, it can be seen that in order to control and deal with epidemic diseases, especially in small environments, several factors must be taken seriously, of which, serious and severe restrictions on the movement of agents, their gatherings and the observance of health and protective instructions (for example, using a mask and quarantine agents) cab be pointed out. 

کلیدواژه‌ها [English]

  • Mathematical modeling
  • Agent- based models
  • Epidemic
  • Disease transmission models
  • COVID-19
[1] G. Li, R. Hu, and X. Gu, “A close-up on COVID-19 and cardiovascular diseases,” Nutr. Metab. Cardiovasc. Dis., vol. 30, no. 7, pp. 1057-1060, 2020, doi: 10.1016/j.numecd.2020.04.001.
[2] N.T.J. Bailey, The mathematical theory of infectious diseases and its applications, 2nd edition, Charles Griffin & Company Ltd, 1976. 
[3] U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo, MIT Press, 2015.
[4] S. Banisch, Markov Chain Aggregation for Agent-Based Models, Springer Cham, 2016, doi: 10.1007/978-3-319-24877-6.
[5] Y. Li and Q. Zhang, “The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model,” Physica A Stat. Mech. Appl., vol. 538, p. 122972, 2020, doi: 10.1016/j.physa.2019.122972.
[6] W.O. Kermack and A.G. McKendrick, “A Contributions to the mathematical theory of epidemics,” Proc. Royal Soc. London, Series A, vol. 115, no. 772, pp. 700-721, 1927, doi: 10.1098/rspa.1927.0118.
[7] T.C. Germann, K. Kadau, I.M. Longini Jr, and C.A. Macken, “Mitigation strategies for pandemic influenza in the United States,” Proc. Natl. Acad. Sci. USA, vol. 103, no. 15, pp. 5935-5940, 2006, doi: 10.1073/pnas.0601266103.
[8] E. Hunter, B.M. Namee, and J.D. Kelleher, “A Hybrid Agent-Based and Equation Based Model for the Spread of Infectious Diseases,” J. Artif. Soc. Soc. Simul., vol. 23, no. 4, pp. 1-14, 2020, doi: 10.18564/jasss.4421.
[9] M. Tracy, M. Cerda, and K.M. Keyes, “Agent-Based Modeling in Public Health: Current Applications and Future Directions,” Annu. Rev. Public Health, vol. 39, pp. 77-94, 2018, doi: 10.1146/annurev-publhealth-040617-014317.
[10] E. Hunter, B. Mac Namee, and J. Kelleher, “An open-data-driven agent-based model to simulate infectious disease outbreaks,” PLoS One, vol. 13, no. 12, p. e0208775, 2018, doi: 10.1371/journal.pone.0208775.
[11] I.M. Longini Jr, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, and M.E. Halloran, “Containing pandemic influenza at the source,” Science, vol. 309, no. 5737, pp. 1083-1087, 2005, doi: 10.1126/science.1115717.
[12] T. Smieszek, M. Balmer, J. Hattendorf, K.W.Axhausen, J. Zinsstag, and R.W. Scholz, “Reconstruction the 2003/2004 H3N2 Influenza Epidemic in in Switzerland with a spatially explicit, individual-based model,” BMC Infect. Dis., vol. 11, p. 115, 2011, doi: 10.1186/1471-2334-11-115.
[13] M. Eichner, M. Schwehm, N. Wilson, and M.G. Baker, “Small Islands and Pandemic Influenza: Potential Benefits and Limitations of Travel Volume Reduction as a Border Control Measure,” BMC Infect. Dis., vol. 9, p. 160, 2009, doi: 10.1186/1471-2334-9-160.
[14] O.M. Cliff, N. Harding, M. Piraveenan, E.Y. Erten., M. Gambhir, and M. Prokopenko, “Investigating Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: an Agent-Based Modelling Approach,” Simul. Model. Pract. Theory, vol. 87, pp. 412-431, 2018, doi: 10.1016/j.simpat.2018.07.005.
[15] M. Marini, C. Brunner, N. Chokani, and S.R. Abhari, “Enhancing response preparedness to influenza epidemics: Agent-based study of 2050 influenza season in Switzerland,” Simul. Model. Pract. Theory, vol. 103, p. 102091, 2020, doi: 10.1016/j.simpat.2020.102091.
[16] L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A multi-scale agent-based model of infectious disease transmission to assess the impact of vaccination and non-pharmaceutical interventions: The COVID-19 case,” J. Saf. Sci. Resil., vol. 2, no. 4, pp. 199-207, 2021, doi: 10.1016/j.jnlssr.2021.08.005.
[17] E. Cuevas, “An agent-based model to evaluate the COVID-19 transmission risks in facilities,” Comput. Biol. Med., vol. 121, p. 103827, 2020, doi: 10.1016/j.compbiomed.2020.103827.
[18] A. Datta, P. Winkelstein, and S. Sen, “An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State,” Physica A Stat. Mech. Appl., vol.  585, p. 126401, 2022, doi: 10.1016/j.physa.2021.126401.
[19] S. Winkelmann, J. Zonker, C. Schutte, and N.D. Conrad, “Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading,” Math. Biosci., vol. 336, p. 108619, 2021, doi: 10.48550/arXiv.2205.05000.
[20] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating human systems,” in Proc. Natl. Acad. Sci. USA (PNAS), 2002, pp. 7280-7287, doi: 10.1073/pnas.082080899.
[21] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2-9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[22] M. Parsamanesh and A. Akrami, “Sensitivity Analysis of a Mathematical Fuzzy Epidemic Model for COVID-19,” Soft Comput. J., vol. 12, no. 1, pp. 34-37, 2023, doi: 10.22052/SCJ.2023.248364.1100.
[23] N. Cheetham, W. Waites, I. Ebyarimpa, W. Leber, K. Brennan, and J. Panovska-Griffiths, “Determining the level of social distancing necessary to avoid future COVID-19 epidemic waves: a modelling study for North East London,” Sci. Rep., vol.  11, no. 1, p.  5806, 2021, doi: 10.1038/s41598-021-84907-1. 
[24] F. Vanni, D. Lambert, and L. Palatella, “Epidemic response to physical distancing policies and their impact on the outbreak risk,” arXiv, 2020, doi: 10.48550/arXiv.2007.14620.
[25] World Health Organization, Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations (2023, May. 1), [Online]. Available: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.
[26] M. Wardhana, “Spatial analysis of users movement pattern and its socialization on public facilities and environment through the ESVA,” Proc. Soc. Behav. Sci., vol. 227, pp. 101-106, 2016, doi. 10.1016/j.sbspro.2016.06.049.