[1] G. Li, R. Hu, and X. Gu, “A close-up on COVID-19 and cardiovascular diseases,” Nutr. Metab. Cardiovasc. Dis., vol. 30, no. 7, pp. 1057-1060, 2020, doi: 10.1016/j.numecd.2020.04.001.
[2] N.T.J. Bailey, The mathematical theory of infectious diseases and its applications, 2nd edition, Charles Griffin & Company Ltd, 1976.
[3] U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo, MIT Press, 2015.
[4] S. Banisch, Markov Chain Aggregation for Agent-Based Models, Springer Cham, 2016, doi: 10.1007/978-3-319-24877-6.
[5] Y. Li and Q. Zhang, “The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model,” Physica A Stat. Mech. Appl., vol. 538, p. 122972, 2020, doi: 10.1016/j.physa.2019.122972.
[6] W.O. Kermack and A.G. McKendrick, “A Contributions to the mathematical theory of epidemics,” Proc. Royal Soc. London, Series A, vol. 115, no. 772, pp. 700-721, 1927, doi: 10.1098/rspa.1927.0118.
[7] T.C. Germann, K. Kadau, I.M. Longini Jr, and C.A. Macken, “Mitigation strategies for pandemic influenza in the United States,” Proc. Natl. Acad. Sci. USA, vol. 103, no. 15, pp. 5935-5940, 2006, doi: 10.1073/pnas.0601266103.
[8] E. Hunter, B.M. Namee, and J.D. Kelleher, “A Hybrid Agent-Based and Equation Based Model for the Spread of Infectious Diseases,” J. Artif. Soc. Soc. Simul., vol. 23, no. 4, pp. 1-14, 2020, doi: 10.18564/jasss.4421.
[9] M. Tracy, M. Cerda, and K.M. Keyes, “Agent-Based Modeling in Public Health: Current Applications and Future Directions,” Annu. Rev. Public Health, vol. 39, pp. 77-94, 2018, doi: 10.1146/annurev-publhealth-040617-014317.
[10] E. Hunter, B. Mac Namee, and J. Kelleher, “An open-data-driven agent-based model to simulate infectious disease outbreaks,” PLoS One, vol. 13, no. 12, p. e0208775, 2018, doi: 10.1371/journal.pone.0208775.
[11] I.M. Longini Jr, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, and M.E. Halloran, “Containing pandemic influenza at the source,” Science, vol. 309, no. 5737, pp. 1083-1087, 2005, doi: 10.1126/science.1115717.
[12] T. Smieszek, M. Balmer, J. Hattendorf, K.W.Axhausen, J. Zinsstag, and R.W. Scholz, “Reconstruction the 2003/2004 H3N2 Influenza Epidemic in in Switzerland with a spatially explicit, individual-based model,” BMC Infect. Dis., vol. 11, p. 115, 2011, doi: 10.1186/1471-2334-11-115.
[13] M. Eichner, M. Schwehm, N. Wilson, and M.G. Baker, “Small Islands and Pandemic Influenza: Potential Benefits and Limitations of Travel Volume Reduction as a Border Control Measure,” BMC Infect. Dis., vol. 9, p. 160, 2009, doi: 10.1186/1471-2334-9-160.
[14] O.M. Cliff, N. Harding, M. Piraveenan, E.Y. Erten., M. Gambhir, and M. Prokopenko, “Investigating Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: an Agent-Based Modelling Approach,” Simul. Model. Pract. Theory, vol. 87, pp. 412-431, 2018, doi: 10.1016/j.simpat.2018.07.005.
[15] M. Marini, C. Brunner, N. Chokani, and S.R. Abhari, “Enhancing response preparedness to influenza epidemics: Agent-based study of 2050 influenza season in Switzerland,” Simul. Model. Pract. Theory, vol. 103, p. 102091, 2020, doi: 10.1016/j.simpat.2020.102091.
[16] L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A multi-scale agent-based model of infectious disease transmission to assess the impact of vaccination and non-pharmaceutical interventions: The COVID-19 case,” J. Saf. Sci. Resil., vol. 2, no. 4, pp. 199-207, 2021, doi: 10.1016/j.jnlssr.2021.08.005.
[17] E. Cuevas, “An agent-based model to evaluate the COVID-19 transmission risks in facilities,” Comput. Biol. Med., vol. 121, p. 103827, 2020, doi: 10.1016/j.compbiomed.2020.103827.
[18] A. Datta, P. Winkelstein, and S. Sen, “An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State,” Physica A Stat. Mech. Appl., vol. 585, p. 126401, 2022, doi: 10.1016/j.physa.2021.126401.
[19] S. Winkelmann, J. Zonker, C. Schutte, and N.D. Conrad, “Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading,” Math. Biosci., vol. 336, p. 108619, 2021, doi: 10.48550/arXiv.2205.05000.
[20] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating human systems,” in Proc. Natl. Acad. Sci. USA (PNAS), 2002, pp. 7280-7287, doi: 10.1073/pnas.082080899.
[21] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2-9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[22] M. Parsamanesh and A. Akrami, “Sensitivity Analysis of a Mathematical Fuzzy Epidemic Model for COVID-19,” Soft Comput. J., vol. 12, no. 1, pp. 34-37, 2023, doi: 10.22052/SCJ.2023.248364.1100.
[23] N. Cheetham, W. Waites, I. Ebyarimpa, W. Leber, K. Brennan, and J. Panovska-Griffiths, “Determining the level of social distancing necessary to avoid future COVID-19 epidemic waves: a modelling study for North East London,” Sci. Rep., vol. 11, no. 1, p. 5806, 2021, doi: 10.1038/s41598-021-84907-1.
[24] F. Vanni, D. Lambert, and L. Palatella, “Epidemic response to physical distancing policies and their impact on the outbreak risk,” arXiv, 2020, doi: 10.48550/arXiv.2007.14620.
[25] World Health Organization, Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations (2023, May. 1), [Online]. Available: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.
[26] M. Wardhana, “Spatial analysis of users movement pattern and its socialization on public facilities and environment through the ESVA,” Proc. Soc. Behav. Sci., vol. 227, pp. 101-106, 2016, doi. 10.1016/j.sbspro.2016.06.049.