پرسه زدن تصادفی روی گراف‌های همبند و کاربرد آن در شبکه‌های الکترونیکی

نوع مقاله : مقاله مروری

نویسندگان

1 گروه آمار، دانشکده علوم ریاضی، دانشگاه کاشان، کاشان، ایران.

2 گروه آمار، دانشکده ریاضی، دانشگاه پیام نور، تهران، ایران.

چکیده

در این مقاله متغیرهای پرسه زدن تصادفی تحلیل می‌شوند. سپس روابط مقادیر ویژه مورد بررسی قرار می‌گیرد. در این میان یک کران برای متغیرهای اصلی تعیین می‌شود. سپس کاربرد در شبکه‌های الکترونیکی شرح داده خواهد شد. همچنین کاربردهایی در علوم کامپیوتر به ویژه در مدیریت رمزگذاری برای شبکه محاسبات ذکر می‌شود. دستاوردهای فیزیکی برای به دست آوردن نتایجی در پرسه زدن تصادفی به کار برده می‌شوند. در پایان الگوریتم‌های کاربردی پرسه زدن تصادفی و نمونه‌گیری با پرسه زدن تصادفی بیان خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Random walk on connected graphs and its application in electronic networks

نویسندگان [English]

  • Mehdi Shams 1
  • Gholamreza Hesamian 2
1 Department of Statistics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.
2 Department of Statistics, Faculty of Mathematics, Payame Noor University, Tehran, Iran.
چکیده [English]

In this article, random walk parameters are analyzed. Then the relations of eigenvalues are examined. Meanwhile, a limit is set for the main parameters. Then, the application in electronic networks will be described. Also, applications in computer science are mentioned, especially in encryption management for the computing network. Physical achievements are used to obtain results in random walks. At the end, the applied algorithms of random walk and random walk sampling will be described.

کلیدواژه‌ها [English]

  • Markov chain
  • Stationary distribution
  • Mixing rate
  • Probability generating function
  • Connected graph
[1] P. Diaconis, Group Representations in Probability and Statistics, Lecture Notes-Monograph Series, vol. 11, pp. i-192, 1988.
[2] G. Polya, “Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strabennetz,” Math. Annalen., vol. 84, pp. 149-160, 1921.
[3] P.G. Doyle and J.L. Snell, Random walks and Electric Networks, Mathematical Association of America, 1984.
[4] P.E.T. Jorgensen and E.P.J. Pearse, “Resistance Boundaries of Infinite Networks,” in Random Walks, Boundaries and Spectra. Progress in Probability, vol 64, Springer, Basel, 2011, pp. 111-142, doi: 10.1007/978-3-0346-0244-0_7.
[5] M. Mohagheghi, “An approach to accelerate policy iteration for probabilistic model checking of Markov decision processes using machine learning,” Soft Comput. J., vol. 11, no. 2, pp. 134-148, 2023, doi: 10.22052/scj.2023.243360.1029 [In Persian].
[6] A. Yadollahi and H. Sabaghian-Bidgoli, “A simulation model for the propagation of Covid-19 virus based on the discrete-time Markov chain,” Soft Comput. J., vol. 11, no. 2, pp. 88-103, 2023, doi: 10.22052/scj.2023.246527.1076 [In Persian].
[7] A. Nachmias, “Random Walks and Electric Networks,” in Planar Maps, Random Walks and Circle Packing, vol. 2243, Springer, Cham, pp. 11-31, 2020, doi: 10.1007/978-3-030-27968-4_2.
[8] D. Rasteiro, “Random Walks in Electric Networks,” in Computational Intelligence and Decision Making, Intelligent Systems, Control and Automation: Science and Engineering, vol. 61, Springer, Dordrecht, 2013, doi: 10.1007/978-94-007-4722-7_24.
[9] H. Chen, “Random walks and the effective resistance sum rules,” Discret. Appl. Math., vol. 158, no. 15, pp. 1691-1700, 2010, doi: 10.1016/j.dam.2010.05.020.
[10] H. Chen and F. Zhang, “The rapid mixing of random walks defined by an n-cube,” Adv. Appl. Math., vol. 33, no. 1, pp. 136-145, 2004, doi: 10.1016/j.aam.2003.08.001.
[11] S.M. Ross, Introduction to Probability Models, 12th Edition, Academic Press, 2019.
[12] G. Grimmett, Probability on graphs, 2nd Edition, Cambridge University Press, 2018, doi: 10.1017/9781108528986.
[13] R.P. Dobrow, Introduction to Stochastic Processes with R, John Wiley & Sons. 2016, doi: 10.1002/9781118740712.
[14] J.L. Gross, J. Yellen, and M. Anderson, Graph Theory and its Applications, Third Edition, CRC Press, Taylor & Francis Group, 2018.
[15] D. Aldous and J.A. Fill, Reversible Markov Chains and Random Walks on Graphs, University of California, Berkeley, 2002.
[16] F. Castella and B. Sericola, “Hitting times on the lollipop graph,” Probab. Eng. Inf. Sci., pp. 1-34, 2025, doi: 10.1017/S0269964825000026.
[17] P. Tetali, “Random walks and effective resistance of networks,” J. Theor. Probab., vol. 4, pp. 101-109, 1991, doi: 10.1007/BF01046996.
[18] A. Georgakopoulos and S. Wagner, “Hitting times, cover cost, and the wiener index of a tree,” J. Graph Theory, vol. 84, no. 3, pp. 311-326, 2017, doi: 10.1002/jgt.22029.
[19] L. Lovasz and P. Winkler, “Mixing of random walks and other diffusions on a graph,” in Surveys in Combinatorics, Cambridge, Cambridge University Press, pp. 119-154, 1995, doi: 10.1017/CBO9780511662096.007.
[20] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,” Bull. Amer. Math. Soc., vol. 43, pp. 439–561, 2006, doi: 10.1090/S0273-0979-06-01126-8.
[21] D.A. Levin and Y. Peres, Markov chains and mixing times, 2nd Edition, American Mathematical Society, 2017.
[22] S. Mehrjoo and F. Khunjush, “River Formation Dynamics based routing in Wireless Sensor Network,” Soft Comput. J., vol. 3, no. 2, pp. 54-67, 2015, dor: 20.1001.1.23223707.1393.3.2.58.1 [In Persian].
[23] G. Brightwell and P. Winkler, “Maximum hitting time for random walks on graphs,” Random Struct. Algorithms, vol. 1, no. 3, pp. 263-276, 1990, doi: 10.1002/rsa.3240010303.
[24] U. Feige, “A Tight Upper Bound on the Cover Time for Random Walks on Graphs,” Random Struct. Algorithms, vol. 6, no. 1, pp. 51-54, 1995, doi: 10.1002/rsa.3240060106.
[25] U. Feige, Collecting Coupons on Trees and the Analysis of Random Walks, Technical report CS93-20 of the Weizmann Institute, 1993.
[26] D. Coppersmith, P. Tetali, and P. Winkler, “Collisions among random walks on a graph,” SIAM J. Discret. Math., vol. 6, no. 3, pp. 363-374, 1993, doi: 10.1137/0406029.
[27] P. Diaconis, R.L. Graham, and J.A. Morrison, “Asymptotic analysis of a random walk on a hypercube with many dimensions,” Random Struct. Algorithms, vol. 1, no. 1, pp. 51-72, 1990, doi: 10.1002/rsa.3240010105.
[28] P. Matthews, “Covering problems for Brownian motion on spheres,” Ann. Prob., vol. 16, no. 1, pp. 189-199, 1998, doi: 10.1214/aop/1176991894.
[29] J. Keilson, Markov Chain Models-Rarity and Exponentiality, Springer-Verlag, 1979.
[30] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random Walks: A Review of Algorithms and Applications,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 2, pp. 95-107, 2020, doi: 10.1109/TETCI.2019.2952908.
[31] R.D. Nussbaum and S.M. Verduyn Lunel, “Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps,” Mem. Amer. Math. Soc., vol. 138, pp. 1-98, 1999, doi: 0.1090/memo/0659.
[32] L. Lovasz, Graphs and geometry, American Mathematical Society, 2019.
[33] J. Huang and S. Li, “On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs,” Bull. Aust. Math. Soc., vol. 91, no. 3, pp. 353-367, 2015, doi: 10.1017/S0004972715000027.
[34] J. Zhou, C. Bu, H.-J. Lai, “Edge-disjoint spanning trees and forests of graphs,” Discret. Appl. Math., vol. 299, pp. 74-81, 2021, doi: 10.1016/j.dam.2021.04.024.
[35] M. Kempton, “Non-Backtracking Random Walks and a Weighted Ihara’s Theorem,” Open J.  Discret. Math., vol. 6, no. 4, pp. 207-226, 2016, doi: 10.4236/ojdm.2016.64018.
[36] L. Lovasz, Combinatorial Problems and Exercises, 2nd Edition, American Mathematical Society, 2007.
[37] P. Diaconis and L. Saloff-Coste, “Comparison theorems for random walk on finite groups,” Ann. Probab., vol. 21, no. 4, pp. 2131-2156, 1993, doi: 10.1214/aop/1176989013.
[38] L. Babai and M. Szegedy, “Local expansion of symmetrical graphs,” Comb. Probab. Comput., vol. 1, no. 1, pp. 1-11, 1992, doi: 10.1017/S0963548300000031.
[39] S. Schmidt, “On the quantum symmetry of distance-transitive graphs,” Adv. Math., vol. 368, p. 107150, 2020, doi: 10.1016/j.aim.2020.107150.
[40] L. Babai, “Monte Carlo algorithms in graph isomorphism testing,” Universite de Monteral, Tech. Rep., pp.  79-110, 1979.
[41] A. Karzanov and L. Khachiyan, “On the conductance of order Markov chains,” Order, vol. 8, pp. 7-15, 1991, doi: 10.1007/BF00385809.
[42] J.D. Annan, “A randomised approximation algorithm for counting the number of forests in dense graphs,” Comb. Probab. Comput., vol. 3, pp. 273-283, 1994, doi: 10.1017/S0963548300001188.
[43] D. Welsh, Complexity: Knots, Colourings and Countings, Cambridge University Press, 1993, doi: 10.1017/CBO9780511752506.
[44] M.E. Dyer and A.M. Frieze, “On the complexity of computing the volume of a Polyhedron,” SIAM J. Comput., vol. 17, no. 5, pp. 967-974, 1998, doi: 10.1137/0217060.
[45] R. Schneider, “On a Formula for the Volume of Polytopes,” in Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 2266, Springer, Cham, 2021, doi: 10.1007/978-3-030-46762-3_16.
[46] G. Elekes, “A geometric inequality and the complexity of computing volume,” Descret. Comput. Geom., vol. 1, pp. 289-292, 1986, doi: 10.1007/BF02187701.
[47] M. Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer 1988, doi: 10.1007/978-3-642-97881-4.
[48] L. Lovasz and M. Simonovits, “Random walks in a convex body and an improved volume algorithm,” Random Struct. Algorithms, vol. 4, no. 4, pp. 359-412, 1993, doi: 10.1002/rsa.3240040402.
[49] N. Metropolis, A. Rosenblut, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087-1092, 1953, doi: 10.1063/1.1699114.
[50] L. Lovasz and P. Winkler, “A note on the last new vertex visited by a random walk,” J. Graph Theory, vol. 17, no. 5, pp. 593-596, 1993, doi: 10.1002/jgt.3190170505.
[51] S. Asmussen, P.W. Glynn, and H. Thorisson, “Stationary detection in the initial transient problem,” ACM Trans. Model. Comput. Simul., vol. 2, no. 2, pp. 130-157, 1992, doi: 10.1145/137926.137932.
[52] L. Lovasz and P. Winkler, “Exact mixing in an unknown Markov chain,” Electron. J. Comb., vol. 2, pp. 1-14, 1995, doi: 10.37236/1209.