[1] P. Diaconis, Group Representations in Probability and Statistics, Lecture Notes-Monograph Series, vol. 11, pp. i-192, 1988.
[2] G. Polya, “Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strabennetz,” Math. Annalen., vol. 84, pp. 149-160, 1921.
[3] P.G. Doyle and J.L. Snell, Random walks and Electric Networks, Mathematical Association of America, 1984.
[4] P.E.T. Jorgensen and E.P.J. Pearse, “Resistance Boundaries of Infinite Networks,” in Random Walks, Boundaries and Spectra. Progress in Probability, vol 64, Springer, Basel, 2011, pp. 111-142, doi: 10.1007/978-3-0346-0244-0_7.
[5] M. Mohagheghi, “An approach to accelerate policy iteration for probabilistic model checking of Markov decision processes using machine learning,” Soft Comput. J., vol. 11, no. 2, pp. 134-148, 2023, doi: 10.22052/scj.2023.243360.1029 [In Persian].
[6] A. Yadollahi and H. Sabaghian-Bidgoli, “A simulation model for the propagation of Covid-19 virus based on the discrete-time Markov chain,” Soft Comput. J., vol. 11, no. 2, pp. 88-103, 2023, doi: 10.22052/scj.2023.246527.1076 [In Persian].
[7] A. Nachmias, “Random Walks and Electric Networks,” in Planar Maps, Random Walks and Circle Packing, vol. 2243, Springer, Cham, pp. 11-31, 2020, doi: 10.1007/978-3-030-27968-4_2.
[8] D. Rasteiro, “Random Walks in Electric Networks,” in Computational Intelligence and Decision Making, Intelligent Systems, Control and Automation: Science and Engineering, vol. 61, Springer, Dordrecht, 2013, doi: 10.1007/978-94-007-4722-7_24.
[9] H. Chen, “Random walks and the effective resistance sum rules,” Discret. Appl. Math., vol. 158, no. 15, pp. 1691-1700, 2010, doi: 10.1016/j.dam.2010.05.020.
[10] H. Chen and F. Zhang, “The rapid mixing of random walks defined by an n-cube,” Adv. Appl. Math., vol. 33, no. 1, pp. 136-145, 2004, doi: 10.1016/j.aam.2003.08.001.
[11] S.M. Ross, Introduction to Probability Models, 12th Edition, Academic Press, 2019.
[12] G. Grimmett, Probability on graphs, 2nd Edition, Cambridge University Press, 2018, doi: 10.1017/9781108528986.
[13] R.P. Dobrow, Introduction to Stochastic Processes with R, John Wiley & Sons. 2016, doi: 10.1002/9781118740712.
[14] J.L. Gross, J. Yellen, and M. Anderson, Graph Theory and its Applications, Third Edition, CRC Press, Taylor & Francis Group, 2018.
[15] D. Aldous and J.A. Fill, Reversible Markov Chains and Random Walks on Graphs, University of California, Berkeley, 2002.
[16] F. Castella and B. Sericola, “Hitting times on the lollipop graph,” Probab. Eng. Inf. Sci., pp. 1-34, 2025, doi: 10.1017/S0269964825000026.
[17] P. Tetali, “Random walks and effective resistance of networks,” J. Theor. Probab., vol. 4, pp. 101-109, 1991, doi: 10.1007/BF01046996.
[18] A. Georgakopoulos and S. Wagner, “Hitting times, cover cost, and the wiener index of a tree,” J. Graph Theory, vol. 84, no. 3, pp. 311-326, 2017, doi: 10.1002/jgt.22029.
[19] L. Lovasz and P. Winkler, “Mixing of random walks and other diffusions on a graph,” in Surveys in Combinatorics, Cambridge, Cambridge University Press, pp. 119-154, 1995, doi: 10.1017/CBO9780511662096.007.
[20] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,” Bull. Amer. Math. Soc., vol. 43, pp. 439–561, 2006, doi: 10.1090/S0273-0979-06-01126-8.
[21] D.A. Levin and Y. Peres, Markov chains and mixing times, 2nd Edition, American Mathematical Society, 2017.
[22] S. Mehrjoo and F. Khunjush, “River Formation Dynamics based routing in Wireless Sensor Network,” Soft Comput. J., vol. 3, no. 2, pp. 54-67, 2015, dor: 20.1001.1.23223707.1393.3.2.58.1 [In Persian].
[23] G. Brightwell and P. Winkler, “Maximum hitting time for random walks on graphs,” Random Struct. Algorithms, vol. 1, no. 3, pp. 263-276, 1990, doi: 10.1002/rsa.3240010303.
[24] U. Feige, “A Tight Upper Bound on the Cover Time for Random Walks on Graphs,” Random Struct. Algorithms, vol. 6, no. 1, pp. 51-54, 1995, doi: 10.1002/rsa.3240060106.
[25] U. Feige, Collecting Coupons on Trees and the Analysis of Random Walks, Technical report CS93-20 of the Weizmann Institute, 1993.
[26] D. Coppersmith, P. Tetali, and P. Winkler, “Collisions among random walks on a graph,” SIAM J. Discret. Math., vol. 6, no. 3, pp. 363-374, 1993, doi: 10.1137/0406029.
[27] P. Diaconis, R.L. Graham, and J.A. Morrison, “Asymptotic analysis of a random walk on a hypercube with many dimensions,” Random Struct. Algorithms, vol. 1, no. 1, pp. 51-72, 1990, doi: 10.1002/rsa.3240010105.
[28] P. Matthews, “Covering problems for Brownian motion on spheres,” Ann. Prob., vol. 16, no. 1, pp. 189-199, 1998, doi: 10.1214/aop/1176991894.
[29] J. Keilson, Markov Chain Models-Rarity and Exponentiality, Springer-Verlag, 1979.
[30] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random Walks: A Review of Algorithms and Applications,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 2, pp. 95-107, 2020, doi: 10.1109/TETCI.2019.2952908.
[31] R.D. Nussbaum and S.M. Verduyn Lunel, “Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps,” Mem. Amer. Math. Soc., vol. 138, pp. 1-98, 1999, doi: 0.1090/memo/0659.
[32] L. Lovasz, Graphs and geometry, American Mathematical Society, 2019.
[33] J. Huang and S. Li, “On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs,” Bull. Aust. Math. Soc., vol. 91, no. 3, pp. 353-367, 2015, doi: 10.1017/S0004972715000027.
[34] J. Zhou, C. Bu, H.-J. Lai, “Edge-disjoint spanning trees and forests of graphs,” Discret. Appl. Math., vol. 299, pp. 74-81, 2021, doi: 10.1016/j.dam.2021.04.024.
[35] M. Kempton, “Non-Backtracking Random Walks and a Weighted Ihara’s Theorem,” Open J. Discret. Math., vol. 6, no. 4, pp. 207-226, 2016, doi: 10.4236/ojdm.2016.64018.
[36] L. Lovasz, Combinatorial Problems and Exercises, 2nd Edition, American Mathematical Society, 2007.
[37] P. Diaconis and L. Saloff-Coste, “Comparison theorems for random walk on finite groups,” Ann. Probab., vol. 21, no. 4, pp. 2131-2156, 1993, doi: 10.1214/aop/1176989013.
[38] L. Babai and M. Szegedy, “Local expansion of symmetrical graphs,” Comb. Probab. Comput., vol. 1, no. 1, pp. 1-11, 1992, doi: 10.1017/S0963548300000031.
[39] S. Schmidt, “On the quantum symmetry of distance-transitive graphs,” Adv. Math., vol. 368, p. 107150, 2020, doi: 10.1016/j.aim.2020.107150.
[40] L. Babai, “Monte Carlo algorithms in graph isomorphism testing,” Universite de Monteral, Tech. Rep., pp. 79-110, 1979.
[41] A. Karzanov and L. Khachiyan, “On the conductance of order Markov chains,” Order, vol. 8, pp. 7-15, 1991, doi: 10.1007/BF00385809.
[42] J.D. Annan, “A randomised approximation algorithm for counting the number of forests in dense graphs,” Comb. Probab. Comput., vol. 3, pp. 273-283, 1994, doi: 10.1017/S0963548300001188.
[43] D. Welsh, Complexity: Knots, Colourings and Countings, Cambridge University Press, 1993, doi: 10.1017/CBO9780511752506.
[44] M.E. Dyer and A.M. Frieze, “On the complexity of computing the volume of a Polyhedron,” SIAM J. Comput., vol. 17, no. 5, pp. 967-974, 1998, doi: 10.1137/0217060.
[45] R. Schneider, “On a Formula for the Volume of Polytopes,” in Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 2266, Springer, Cham, 2021, doi: 10.1007/978-3-030-46762-3_16.
[46] G. Elekes, “A geometric inequality and the complexity of computing volume,” Descret. Comput. Geom., vol. 1, pp. 289-292, 1986, doi: 10.1007/BF02187701.
[47] M. Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer 1988, doi: 10.1007/978-3-642-97881-4.
[48] L. Lovasz and M. Simonovits, “Random walks in a convex body and an improved volume algorithm,” Random Struct. Algorithms, vol. 4, no. 4, pp. 359-412, 1993, doi: 10.1002/rsa.3240040402.
[49] N. Metropolis, A. Rosenblut, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087-1092, 1953, doi: 10.1063/1.1699114.
[50] L. Lovasz and P. Winkler, “A note on the last new vertex visited by a random walk,” J. Graph Theory, vol. 17, no. 5, pp. 593-596, 1993, doi: 10.1002/jgt.3190170505.
[51] S. Asmussen, P.W. Glynn, and H. Thorisson, “Stationary detection in the initial transient problem,” ACM Trans. Model. Comput. Simul., vol. 2, no. 2, pp. 130-157, 1992, doi: 10.1145/137926.137932.
[52] L. Lovasz and P. Winkler, “Exact mixing in an unknown Markov chain,” Electron. J. Comb., vol. 2, pp. 1-14, 1995, doi: 10.37236/1209.