Sensitivity analysis of a mathematical fuzzy epidemic model for COVID-19

نوع مقاله : مقاله پژوهشی کوتاه

نویسندگان

1 گروه ریاضی، دانشگاه فنی و حرفه ای، تهران، ایران.

2 گروه ریاضی، دانشگاه زابل، زابل، ایران.

چکیده

In this paper, an epidemic model with fuzzy parameters for spreading COVID-19 in a population is considered. The sensitivity analysis is used to determine the model robustness to parameter values of the model. The basic reproduction number of the epidemic model denoted by R_0 determines the dynamics of the model. Then, in order to examine the relative importance of different parameters in the COVID-19 spread, we derive an analytical expression for the sensitivity of the basic reproduction number R_0, namely sensitivity index, with respect to each parameter involved in the model. Finally,  sensitivity analysis results and the numerical simulations of the model are given with different parameter values.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity analysis of a mathematical fuzzy epidemic model for COVID-19

نویسندگان [English]

  • Mahmood Parsamanesh 1
  • Abbas Akrami 2
1 Department of Mathematics, Technical and Vocational University, Tehran, Iran.
2 Department of Mathematics, University of Zabol, Zabol, Iran.
چکیده [English]

In this paper, an epidemic model with fuzzy parameters for spreading COVID-19 in a population is considered. The sensitivity analysis is used to determine the model robustness to parameter values of the model. The basic reproduction number of the epidemic model denoted by R_0 determines the dynamics of the model. Then, in order to examine the relative importance of different parameters in the COVID-19 spread, we derive an analytical expression for the sensitivity of the basic reproduction number R_0, namely sensitivity index, with respect to each parameter involved in the model. Finally,  sensitivity analysis results and the numerical simulations of the model are given with different parameter values.

کلیدواژه‌ها [English]

  • Fuzzy number
  • Epidemic model
  • COVID-19
  • Basic reproduction number
  • Sensitivity analysis
[1] R. Akhoondi and R. Hosseini, “A novel fuzzygenetic differential evolutionary algorithm for optimization of a fuzzy expert systems applied to heart disease prediction,” Soft Comput. J., vol. 6, no. 2, pp. 32–47, 2018, dor: 20.1001.1.23223707.1396.6.2.3.7 [In Persian].
[2] R. Taimourei-Yansary, M. Mirzarezaee, M. Sadeghi, and B. N. Araabi, “Predicting invasive disease-free survival time in breast cancer patients using graph-based semi-supervised machine learning techniques,” Soft Comput. J., vol. 10, no. 1, pp. 48–69, 2021, doi: 10.22052/scj.2022.243330.1039 [In Persian].
[3] M. Parsamanesh and M. Erfanian, “Global dynamics of a mathematical model for propagation of infection diseases with saturated incidence rate,” J. Adv. Math. Model., vol. 11, no. 1, pp. 69–81, 2021, doi: 10.22055/jamm.2020.33801.1822 [In Persian].
[4] A. Ajbar, R. T. Alqahtani, and M. Boumaza, “Dynamics of an sir-based covid-19 model with linear incidence rate, nonlinear removal rate, and public awareness,” Front. Phys., vol. 9, p. 634251, 2021, doi: 10.3389/fphy.2021.634251.
[5] S. I. Vinitsky, A. A. Gusev, V. Derbov, P. M. Krassovitskiy, F. Pen’kov, and G. Chuluunbaatar, “Reduced sir model of covid-19 pandemic,” Comput. Math. Math. Phys., vol. 61, pp. 376–387, 2021, doi: 10.1134/S0965542521030155.
[6] X. Chen, J. Li, C. Xiao, and P. Yang, “Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19,” Fuzzy Optim. Decis. Mak., vol. 20, no. 2, pp. 189–208, 2021, doi: 10.1007/S10700-020-09342-9.
[7] N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, T.-E. Oussaeif, and S. Momani, “A novel fractional-order discrete sir model for predicting covid-19 behavior,” Mathematics, vol. 10, no. 13, 2022, doi: 10.3390/math10132224.
[8] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of corona-virus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2–9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[9] A. Abidemi, M. Abd Aziz, and R. Ahmad, “Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation,” Chaos Solitons Fractals., vol. 133, p.109648, 2020, doi: 10.1016/j.chaos.2020.109648.
[10] N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bull. Math. Biol., vol. 70, pp. 1272–1296, 2008, doi: 10.1007/s11538-008-9299-0.