[1] M.J. Asgharpour, Group Decision Making and Game Thory: an Approach on Operations Research, Samt Press, Tehran University, Tehran, Iran, 2003, [In Persian].
[2] J.B. Krawczyk and V. Petkov, “Multistage Games,” In: Handbook of Dynamic Game Theory, T. Basar and G. Zaccour, Springer, Cham, 2018, doi: 10.1007/978-3-319-44374-4_3.
[3] B.R. Myerson, “Multistage Games with Communication”, Econometrica, vol. 54, no. 2, pp. 323-358, 1986, doi: 10.2307/1913154.
[4] L.M. Littman, “Value-function reinforcement learning in Markov games”, Cogn. Syst. Res., vol. 2, no. 1, pp. 55-66, 2001, doi: 10.1016/S1389-0417(01)00015-8.
[5] P. Vrancx, “Decentralised Reinforcement Learning in Markov Games”, Ph.D. dissertation, Brussel University, Brussels, Belgium, 2010.
[6] J.M. Osborne, An introduction to Game Theory, Oxford University Press, Oxford, UK, 2000.
[7] M. Finus, Game theory and international environmental cooperation, Edward Elgar Press, Massachusetts, USA, 2001.
[8] K. Mollering, Inventory Rationing: A New Modeling Approach Using Markov Chain Theory, Springer Press, Koln, Germany, 2019.
[9] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman & Hall Press, London, UK, 1996.
[10] S. Balaji, E.G. Julie, Y.H. Robinson, R. Kumar, P.H. Thong, and L.H. Son, “Design of a security-aware routing schemein Mobile Ad-hoc Network using repeated game model,” Comput. Stand. Interfaces, vol. 66, 2019, doi: 10.1016/j.csi.2019.103358.
[11] Y. Jie, X. Tang, K.-K. R. Choo, S. Su, M. Li, and C. Guo, “Online task scheduling for edge computing based on repeated Stackelberg game,” J. Parallel Distributed Comput., vol. 122, pp. 159-172, 2018, doi: 10.1016/j.jpdc.2018.07.019.
[12] N.T. Cason and V.-L. Mui, “Individual versus group choices of repeated game strategies: A strategy method approach,” Games Econ. Behav., vol. 114, pp. 128-145, 2019, doi: 10.1016/j.geb.2019.01.003.
[13] G. Ashkenazi-Golan and E. Lehrer, “Blackwell's comparison of experiments and discounted repeated games,” Games Econ. Behav., vol. 117, pp. 163-194, 2019, doi: 10.1016/j.geb.2019.06.003.
[14] E. Ianovski and L. Ong, “The complexity of decision problems about equilibria in two-player Boolean games,” Artif. Intell., vol. 261, pp. 1-15, 2018, doi: 10.1016/j.artint.2018.04.006.
[15] F. Gensbittel and C. Rainer, “A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion,” Dyn. Games Appl., vol. 8, no. 2, pp. 280-314, 2018, doi: 10.1007/s13235-017-0219-5}.
[16] V.O. Baskov, “Equilibrium payoffs in repeated two-player zero-sum games of finite automata,” Int. J. Game Theory, vol. 48, no. 2, pp. 423-431, 2019, doi: 10.1007/s00182-018-0634-x.
[17] Z. Wang, Q. Wei, and D. Liu, “Event-triggered adaptive dynamic programming for discrete-time multi-player games,” Inf. Sci., vol. 506, pp. 457-470, 2020, doi: 10.1016/j.ins.2019.05.071.
[18] R. Song and L. Zhu, “Stable value iteration for two-player zero-sum game of discrete-time nonlinear systems based on adaptive dynamic programming,” Neurocomputing, vol. 340, pp. 180-195, 2019, doi: 10.1016/j.neucom.2019.03.002.
[19] P.M. Abraham and A.A. Kulkarni, “An Approach Based on Generalized Nash Games and Shared Constraints for Discrete Time Dynamic Games,” Dyn. Games Appl., vol. 8, no. 4, pp. 641–670, 2018, doi: 10.1007/s13235-017-0231-9.
[20] A.Yadollahi, J. Salimi-Sartaghti, and S. Goli-Bidgoli, “Modeling the security of virtual machines in the cloud using iterative game theory,” Soft Comput. J., vol. 10, no. 1, pp. 2-15, 2021, doi: 10.22052/scj.2021.242842.0 [In Persian].
[21] B.A. Eisenbruch, L.R. Grillot, D. Maestripieri, and R.J. Roney, “Evidence of partner choice heuristics in a one-shot bargaining game,” Evol. Hum. Behav., vol. 37, no. 6, pp. 429-439, 2016, doi: 10.1016/j.evolhumbehav.2016.04.002.
[22] R.A. Laird, “Sequential interactions – in which one player plays first and another responds – promote cooperation in evolutionary-dynamical simulations of single-shot Prisoner's Dilemma and Snowdrift games,” J. Theor. Biol., vol. 452, pp. 69-80, 2018, doi: 10.1016/j.jtbi.2018.05.007.
[23] G. Charness, L. Rigotti, and A. Rustichini, “Social surplus determines cooperation rates in the one-shot Prisoner's Dilemma,” Games Econ. Behav., vol. 100, pp. 113-124, 2016, doi: 10.1016/j.geb.2016.08.010.
[24] J.-L. Tan, C. Lei, H. Zhang, and Y.-q. Cheng, “Optimal strategy selection approach to moving target defense based on Markov robust game,” Comput. Secur., vol. 85, pp. 63-76, 2019, doi: 10.1016/j.cose.2019.04.013.
[25] S.E. Albarran and J.B. Clempner, “A Stackelberg security Markov game based on partial information for strategic decision making against unexpected attacks,” Eng. Appl. Artif. Intell., vol. 81, pp. 408-419, 2019, doi: 10.1016/j.engappai.2019.03.010.
[26] R. Sadeghian, “Determining the Equilibrium Solution in Two-Player Static Discrete Markovian Games,” Mod. Res. Decis. Mak., vol. 5, no. 4, pp. 85-99, 2021 [In Persian].
[27] G. Wu, G. Tan, J. Deng, and D. Jiang, “Distributed reinforcement learning algorithm of operator service slice competition prediction based on zero-sum markov game,” Neurocomputing, vol. 439, pp. 212-222, 2021, doi: 10.1016/j.neucom.2021.01.061.
[28] Y. Zhao, L. Huang, C. Smidts, and Q. Zhu, “Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants,” Reliab. Eng. Syst. Saf., vol. 201, p. 106878, 2020, doi: 10.1016/j.ress.2020.106878.