[1] Y. Liu, D. Zhang, G. Lu, and W. Ma, “A survey of content-based image retrieval with high-level semantics,” Pattern Recognit., vol. 40, pp. 262-282, 2006, doi: 10.1016/j.patcog.2006.04.045.
[2] N. Ghosh, S. Agrawal, and M. Motwani, “A survey of feature extraction for content-based image retrieval system,” Proc. Int. Conf. Recent Adv. Comput. Commun., vol. 34, pp. 305-313, 2018, doi: 10.1007/978-981-10-8198-9_32.
[3] Y. Rui, T.S. Huang, and S.F. Change, “Image Retrieval: Current Techniques, Promising Directions and Open Issues,” J. Vis. Commun. Image Represent., vol. 10, pp. 39-62, 1999, doi: 10.1006/jvci.1999.0413.
[4] R. Datta, D. Joshi, Z. Li, and J.Z. Wang, “Image Retrieval: Ideas, Influences, and Trends of the New Age,” ACM Comput. Surv., vol. 40, pp. 1-60, 2008, doi: 10.1145/1348246.1348248.
[5] F. Long, H. Zhang, and D.D. Feng, Fundamentals of Content-Based Image Retrieval, Signals and Communication Technology. Springer, 2003, doi: 10.1007/978-3-662-05300-3_1.
[6] X. Li, S.C. Chen, M.L. Shyu, and B. Furht, “Image Retrieval by color, Texture, and Spatial Information,” in 8th Int. Conf. Distrib. Multimedia Syst., California, USA: 8, pp. 159-152, 2002.
[7] J. Muwei, D. Junyu, and T. Ruichun, “Image Combining Color, Texture and Region with Objects of user’s Interest for Content-Based Image Retrieval,” 8th ACIS Int. Conf. Softw. Eng. Artif. Intell., Netw. Parallel/Distrib. Comput., IEEE Computer Society, 2007, doi: 10.1109/SNPD.2007.104.
[8] H. Qazanfari, H. Hassanpour, and K. Qazanfari, “A short-term learning framework based on relevance feedback for content-based image retrieval,” 2017 3rd Iranian Conf. Intell. Syst. and Signal Proc. (ICSPIS), Shahrood, pp. 136-140, 2017.
[9] D.T. Quynh, H.Q. Nguyen, and A.H. Son, “Image Retrieval Uses SVM-Based Relevant Feedback for Imbalance and Small Training Set,” IEEE-RIVF Int. Conf. Comput. Commun. Technol., IEEE, pp. 1-6, 2019.
[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE trans. pattern anal. Mach. Intel., vol. 39, pp. 2481-2495, 2017, doi: 10.1109/TPAMI.2016.2644615.
[11] S. Bose, A. Pal, J. Mallick, S. Kumar, and P. Rudra, “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215, 2015.
[12] M. Sardari, A. Monadjemi, and K. Jamshidi, “A concept based model for image retrieval systems,” Comput. Electr. Eng., vol. 46, pp. 303-313, 2015, doi: 10.1016/j.compeleceng.2015.06.018.
[13] M. Sardari, A. Monadjemi, and K. Jamshidi, “A semantic model for general purpose content-based image retrieval systems,” Comput. Electr. Eng., vol. 40, pp. 2062-2071, 2017, doi: 10.1016/j.compeleceng.2014.07.008.
[14] A. Dayma, A. Shrivastava, A.K. Saxena, and M. Manoria, “Support Vector Machine (Linear Kernel) and Interactive Genetic Algorithm-Based Content Image Retrieval Technique,” Proc. Int. Conf. Recent Adv. Comput. Commun., Springer, Singapore, vol. 34, pp. 151-159, 2018, doi: 10.1007/978-981-10-8198-9_16.
[15] A. Huneiti and D. Maisa, “Content-based image retrieval using SOM and DWT,” J. softw. Eng. Appl., vol. 8, pp. 51-61, 2015, doi: 10.4236/jsea.2015.82007.
[16] G. Carneiro, A.B. Chan, P.J. Moreno, and N. Vasconcelos, “Supervised learning of semantic classes for image annotation and retrieval,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 29, pp. 394-410, 2007, doi: 10.1109/TPAMI.2007.61
[17] W. Yang, X. Yin, and G.S. Xia, “Learning high-level features for satellite image classification with limited labeled samples,” IEEE Trans. Geosci. Remote Sens., vol. 53, pp. 4472-4482, 2015, doi: 10.1109/TGRS.2015.2400449.
[18] K.A. Heller and Z. Ghahramani, “A simple Bayesian framework for content-based image retrieval,” in Comput. Vis. Pattern Recognit., 2006 IEEE Computer Society Conference on, pp. 2110-2117, 2006, doi: 10.1109/CVPR.2006.41.
[19] S. Bose, A. Pal, J. Mallick, S. Kumar, and P. Rudra, “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215. 2015.
[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 3431-3440, 2015, doi: 10.1109/CVPR.2015.7298965.
[21] X. Meng, Y. An, J. He, Z. Zhuo, H. Wu, and X. Gao, “Similar image retrieval only using one image,” Optik-Int. J. Light Electron Optics, vol. 127, pp. 141-144, 2016, doi: 10.1016/j.ijleo.2015.10.041.
[22] Y.Y. Xu, “Multiple-instance learning based decision neural networks for image retrieval and classification,” Neurocomputing, vol. 171, pp. 826-836, 2016, doi: 10.1016/j.neucom.2015.07.024.
[23] M. Thilagam and K. Arunish, “Content-based image retrieval techniques: A review,” in Int. Conf. Intell. Comput. Commun. Smart World (I2C2SW), pp. 106-110, 2018.
[24] S. Kastner and L.G. Ungerleider, “The neural basis of biased competition in human visual cortex,” Neuropsychologia, vol. 39, pp. 1263-1276, 2001, doi: 10.1016/s0028-3932(01)00116-6.
[25] S. Razzaghzadeh, P. Norouzi Kivi, and B. Panahi, “A hybrid algorithm based on Gossip architecture using SVM for task scheduling in cloud computing,” Soft Comput. J., vol. 9, no. 2, pp. 84-93, 2020, doi: 10.22052/scj.2021.242822.0 [In Persian].
[26] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].
[27] A. Vasighi-Zaker and S. Jalili, “Candidate disease gene prediction using One-Class classification,” Soft Comput. J., vol. 4, no. 1, pp. 74-83, 2015, dor: 20.1001.1.23223707.1394.4.1.60.8 [In Persian].
[28] C. Hsu and C. Lin, “A comparison of methods for multiclass support vector machines,” IEEE trans. Neural Netw., vol. 13, pp. 415-425, 2002, doi: 10.1109/72.991427.
[29] Dataset (2020. Jun. 21), Dataset [Online]. Available: http://smartcbir.nph-co.ir/datasets.php.
[30] S. Kaur and D. Aggarwal, “Image Content Based Retrieval System using Cosine Similarity for Skin Disease Images,” Adv. Comput. Sci. Int. J., vol. 2, pp. 89-95, 2013.
[31] A. Ajam, M. Forghani, M.M. Alyan-Nezhadi, H. Qazanfari, and Z. Amiri, “Content-based Image Retrieval Using Color Difference Histogram in Image Textures,” 5th Iranian Conf. Signal Proc. Intell. Syst. (ICSPIS), Shahrood, Iran, vol. 5, pp. 1-6, 2019, doi: 10.1109/ICSPIS48872.2019.9066062.
[32] M. Alyan-Nezhadi, H. Qazanfari, A. Ajam, and Z. Amiri, “Content-based Image Retrieval Considering Colour Difference Histogram of Image Texture and Edge Orientation,” Int. J. Eng., vol. 33, pp. 949-958, 2020, doi: 10.5829/IJE.2020.33.05B.28.