بازیابی تصویر مبتنی بر محتوا با استفاده از ماشین بردار پشتیبان و ویژگی‌های هیستوگرام اختلاف بافت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم، دانشگاه علم و فناوری مازندران، بهشهر، ایران

2 دانشکده فنی و مهندسی، موسسه آموزش عالی شاهرود، شاهرود، ایران

3 دانشکده مهندسی کامپیوتر و فناوری اطلاعات، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.22052/scj.2022.246175.1053

چکیده

با توجه به پیشرفت دنیای تصاویر دیجیتال و افزایش تعداد آنها، ارائه سیستمی جهت بازیابی تصویر، از اهمیت زیادی برخوردار است. یک سیستم بازیابی تصویر مبتنی بر محتوا باید بر اساس محتوای تصویر جستجو شده توسط کاربر، تصاویر مشابه را بیابد. لذا در این مقاله یک روش جدید به منظور بازیابی تصویر مبتنی بر محتوا ارائه شده است. برای این منظور، با توجه به اهمیت بافت اشیاء در یک تصویر، ویژگی جدیدی تحت عنوان هیستوگرام اختلاف بافت در جهت لبه برابر معرفی شده است. در روش پیشنهادی، ابتدا ویژگی‌هایی شامل ویژگی جدید معرفی شده، از تصاویر آموزشی استخراج شده و سپس تعدادی از این ویژگی‌ها انتخاب می‌شوند. در ادامه، با استفاده از این ویژگی‌ها و کلاس هر تصویر و همچنین روش یادگیری ماشین بردار پشتیبان، تصاویر در کلاس‌های مختلف به سیستم آموزش داده می‌شوند. ارزیابی روش پیشنهادی با استفاده از پایگاه داده استاندارد Wang انجام شده است و نتایج به دست آمده، توانایی روش پیشنهادی را در بازیابی تصاویر مبتنی بر محتوا نسبت به روش‌های مشابه نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Content-based image retrieval using support vector machine and texture difference histogram features

نویسندگان [English]

  • Mohammad M. AlyanNezhadi 1
  • Mostafa Hosseini 2
  • Hamed Qazanfari 3
  • Ahmad Kamandi 1
1 Dep. Science, University of Science and Technology of Mazandaran, Behshahr, Iran
2 Faculty of Engineering, Shahrood Institute of Higher Education, Shahrood, Iran
3 Faculty of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Due to the progress of the digital image world and increasing numbers, preparing a system for image retrieval is essential. A content-based image retrieval system should find similar images to the image search by a user. In this paper, a novel content-based image retrieval system is proposed. Considering the importance of texture in an image, we introduce a new feature as the histogram of the texture difference in the equal edge orientation. Then, the expressed features are extracted from training images in the proposed system. Then these features are learned using a support vector machine. The proposed system is examined using the standard WANG database. The results show the efficiency of the proposed system in retrieving images compared to similar methods.

کلیدواژه‌ها [English]

  • Content-based image retrieval
  • Texture
  • Edge orientation
  • Texture difference histogram
  • Support vector machine
[1] Liu Y., Zhang D., Lu G., and Ma W., “A survey of content-based image retrieval with high-level semantics,” Pattern Recognition, 40: 262-282, 2006, https://doi.org/10.1016/j.patcog.2006.04.045.
[2] Ghosh N., Agrawal S., and Motwani M., “A survey of feature extraction for content-based image retrieval system,” Proceedings of International Conference on Recent Advancement on Computer and Communication, 34: 305-313, 2018, https://doi.org/10.1007/978-981-10-8198-9_32.
[3] Rui Y., Huang T. S., and Change S. F., “Image Retrieval: Current Techniques, Promising Directions and Open Issues,” Journal of Visual Communication and Image Representation and Image Representation, 10: 39-62, 1999, https://doi.org/10.1006/jvci.1999.0413.
[4] Datta R., Joshi D., Li Z., and Wang J. Z., “Image Retrieval: Ideas, Influences, and Trends of the New Age,” ACM Computing Survey, 40: 1-60, 2008, https://doi.org/10.1145/1348246.1348248.
[5] Long F., Zhang H., and Feng D. D., Fundamentals of Content-Based Image Retrieval, Signals and Communication Technology. Springer, 2003, https://doi.org/10.1007/978-3-662-05300-3_1.
[6] Li X., Chen S.C., Shyu M. L., and Furht B., “Image Retrieval by color, Texture, and Spatial Information,” in 8th International Conference on Distributed Multimedia Systems, California , USA: 8, 159-152, 2002.
[7] Muwei J., Junyu D., and Ruichun T., “Image Combining Color, Texture and Region with Objects of user’s Interest for Content-Based Image Retrieval,” 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, IEEE Computer Society, 2007, https://doi.org/10.1109/SNPD.2007.104.
[8] H. Qazanfari, Hassanpour H., and K. Qazanfari, “A short-term learning framework based on relevance feedback for content-based image retrieval,” 2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS), Shahrood, 136-140, 2017. 
[9] Quynh D. T., Nguyen H. Q., and Son A. H., “Image Retrieval Uses SVM-Based Relevant Feedback for Imbalance and Small Training Set,” IEEE-RIVF International Conference on Computing and Communication Technologies, IEEE, 1-6, 2019.
[10] Badrinarayanan V., Kendall A., and Cipolla R., “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, 39: 2481-2495, 2017, https://doi.org/10.1109/TPAMI.2016.2644615.
[11] Bose S., Pal A., Mallick J., Kumar S., and Rudra P., “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215, 2015.
[12] Sardari M., Monadjemi A., and Jamshidi K., “A concept based model for image retrieval systems,” Computers and Electrical Engineering, 46: 303-313, 2015, https://doi.org/10.1016/j.compeleceng.2015.06.018.
[13] Sardari M., Monadjemi A., and Jamshidi K., “A semantic model for general purpose content-based image retrieval systems,” Computers and Electrical Engineering, 40: 2062-2071, 2017, https://doi.org/10.1016/j.compeleceng.2014.07.008.
[14] Dayma A., Shrivastava A., Saxena A.K., and Manoria M., “Support Vector Machine (Linear Kernel) and Interactive Genetic Algorithm-Based Content Image Retrieval Technique,” Proceedings of International Conference on Recent Advancement on Computer and Communication, Springer, Singapore, 34: 151-159, 2018, https://doi.org/10.1007/978-981-10-8198-9_16.
[15]  Huneiti A. and Maisa D., “Content-based image retrieval using SOM and DWT,” Journal of software Engineering and Applications, 8: 51-61, 2015, https://doi.org/10.4236/jsea.2015.82007.
[16] Carneiro G., Chan A. B., Moreno P. J., and Vasconcelos N., “Supervised learning of semantic classes for image annotation and retrieval,” IEEE transactions on pattern analysis and machine intelligence, 29: 394-410, 2007, https://doi.org/10.1109/TPAMI.2007.61
[17] Yang W., Yin X., and Xia G. S., “Learning high-level features for satellite image classification with limited labeled samples,” IEEE Transactions on Geoscience and Remote Sensing, 53: 4472-4482, 2015, https://doi.org/10.1109/TGRS.2015.2400449.
[18] Heller K. A. and Ghahramani Z., “A simple Bayesian framework for content-based image retrieval,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2110-2117, 2006, https://doi.org/10.1109/CVPR.2006.41.
[19]  Bose S., Pal A., Mallick J., Kumar S., and Rudra P., “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215. 2015.
[20] Long J., Shelhamer E., and Darrell T., “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440, 2015, https://doi.org/10.1109/CVPR.2015.7298965.
[21] Meng X., An Y., He J., Zhuo Z., Wu H., and Gao X., “Similar image retrieval only using one image,” Optik-International Journal for Light and Electron Optics, 127: 141-144, 2016, https://doi.org/10.1016/j.ijleo.2015.10.041.
[22]  Xu Y. Y., “Multiple-instance learning based decision neural networks for image retrieval and classification,” Neurocomputing, 171: 826-836, 2016, https://doi.org/10.1016/j.neucom.2015.07.024.
[23] Thilagam M. and Arunish K., “Content-based image retrieval techniques: A review,” in International Conference on Intelligent Computing and Communication for Smart World (I2C2SW), 106-110, 2018.
[24] Kastner S. and Ungerleider L. G., “The neural basis of biased competition in human visual cortex,” Neuropsychologia, 39: 1263-1276, 2001, https://doi.org/10.1016/s0028-3932(01)00116-6.
[25] رزاق‌زاده ش.، نوروزی‌کیوی پ.، پناهی ب.، «الگوریتم ترکیبی مبتنی بر معماری گوسیپ با استفاده از SVM برای زمانبندی وظایف در رایانش ابری»، مجله محاسبات نرم، جلد 9، شماره 2، ص. 84-93، 1399، https://doi.org/10.22052/SCJ.2021.242822.0.
[26] ویسی ه.، قایدشرف ح.، ابراهیمی م.، «بهبود کارایی الگوریتم‌های یادگیری ماشین در تشخیص بیماری‌های قلبی با بهینه‌سازی داده‌ها و ویژگی‌ها»، مجله محاسبات نرم، جلد 8، شماره 1، ص. 70-85، 1398،  https://doi.org/10.22052/8.1.70.
[27] وثیقی‌ذاکر ا.، جلیلی س.، «پیش‌بینی ژن‏‌های بیماری با استفاده از دسته‏بند تک‌کلاسی ماشین بردار پشتیبان»، مجله محاسبات نرم، جلد 4، شماره 1، ص. 74-83، 1394، https://doi.org/20.1001.1.23223707.1394.4.1.60.8.
[28] Hsu C. and Lin C., “A comparison of methods for multiclass support vector machines,” IEEE transactions on Neural Networks, 13: 415-425, 2002, https://doi.org/10.1109/72.991427.
[29] Dataset: http://smartcbir.nph-co.ir/datasets.php, latest accessed 2020/06/21.
[30] Kaur S. and Aggarwal D., “Image Content Based Retrieval System using Cosine Similarity for Skin Disease Images,” Advances in Computer Science: an International Journal, 2: 89-95, 2013.
[31] Ajam A., Forghani M., AlyanNezhadi M. M., Qazanfari H., and Amiri Z., “Content-based Image Retrieval Using Color Difference Histogram in Image Textures,” 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Shahrood, Iran, 5: 1-6, 2019, https://doi.org/10.1109/ICSPIS48872.2019.9066062.
[32] Alyan-Nezhadi M., Qazanfari H., Ajam A., and Amiri Z., “Content-based Image Retrieval Considering Colour Difference Histogram of Image Texture and Edge Orientation,” International Journal of Engineering, 33: 949-958, 2020, https://doi.org/10.5829/IJE.2020.33.05B.28.