بررسی یک مدل اپیدمیک فازی ریاضی برای انتشار ویروس کرونا در یک جمعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، دانشکده علوم پایه، دانشگاه زابل، زابل، ایران.

2 گروه ریاضی، دانشکده علوم پایه، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در این مقاله یک مدل اپیدمیک با پارامترهای فازی برای بیماری کرونا ارائه شده است. این مدل با توجه به عامل‌های واکسیناسیون، درمان، اجرای پروتکل‌های بهداشتی و میزان ویروس کرونا ساخته شده است. از پارامترهای فازی برای نرخ سرایت، نرخ بهبودی و نرخ مرگ و میر در این بیماری و در تحلیل مدل از روش ماتریس نسل بعد برای محاسبه عدد مولد پایه و پایداری نقاط تعادل مدل استفاده شده است. شبیه‌سازی نتایج نشان می‌دهد جهش‌های مختلف ویروس کرونا باعث تفاوت در انتشار آن است. همچنان که عامل‌های واکسیناسیون و طرز عمل در اجرای پروتکل‌های بهداشتی به میزان قابل ملاحظه‌ای در کاهش یا توقف انتشار ویروس کرونا در یک جمعیت موثر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population

نویسندگان [English]

  • Abbas Akrami 1
  • Mahmood Parsamanesh 2
1 Department of Mathematics, Faculty of Science, University of Zabol, Zabol, Iran
2 Department of Mathematics, Faculty of Science, Technical and vocational University, Tehran, Iran
چکیده [English]

In this paper, an epidemic model with fuzzy parameters for COVID-19 is presented. This model is made according to vaccination, treatment, implementation of health protocols and the coronavirus load. Fuzzy parameters for transmission rate, recovery rate and mortality rate in this disease have been used. Also, in model analysis, we have used the generation matrix method to calculate the basic reproduction number and the equilibrium stability of the model. Simulation of the results shows that different mutations in the coronavirus cause differences in its propagation. In addition, vaccination and practices in the implementation of health protocols are significantly effective in reducing or stopping the spread of coronavirus in a population.

کلیدواژه‌ها [English]

  • Pandemic
  • Health protocols
  • Fuzzy number
  • Coronavirus
  • Mathematical fuzzy epidemic model
  • Vaccination
[1] M. Parsamanesh, M. Erfanian, and A. Akrami, “Modeling of the propagation of infectious diseases: mathematics and population,” Ebnesina, vol. 22, no. 4, pp. 60-74, 2021, doi: 10.22034/22.4.60 [In Persian].
[2] M. Parsamanesh and M. Erfanian, “Global dynamics of a mathematical model for propagation of infection diseases with saturated incidence rate,” J. Adv. Math. Model., vol. 11, no. 1, pp. 69-81, 2021, doi: 10.22055/jamm.2020.33801.1822 [In Persian].
[3] A. Akrami and M. Parsamanesh, “Comparison of Fuzzy and Non-Fuzzy Base Generators in an Epidemic Model for Virus Spread in Computer Networks,” Fuzzy Syst. Appl., vol. 2. No. 2, pp. 109-122, 2019. dor: 20.1001.1.27174409.1398.2.2.5.5 [In Persian].
[4] R. Akhoondi and R. Hosseini, “A Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of a Fuzzy Expert Systems Applied to Heart Disease Prediction,” Soft Comput. J., vol. 6, no. 2, pp. 32-47, 2017, dor: 20.1001.1.23223707.1396.6.2.3.7 [In Persian].
[5] H. Abbasi, M. Shamsi, and A. Rasuli Kenari, “Approaches of user activity detection and a new fuzzy logic-based method to determine the risk amount of user unusual activity in the smart home,” Soft Comput. J., vol. 9, no. 2, pp. 2-13, 2020 doi: 10.22052/scj.2021.242812.0 [In Persian].
[6] H. Moradi Farahani, J. Asgari, and M. Zakeri, “A Surveying on Type-2 Fuzzy Logic: Its Genesis and Its Application,” Soft Comput. J., vol. 2, no. 1, pp. 22-43, 2013 [In Persian].
[7] M. Parsamanesh, “The role of vaccination in controlling the outbreak of infectious diseases: a mathematical approach,” Vaccine Res., vol. 5, no. 1, pp. 32-40, 2018, doi: 10.29252/vacres.5.1.32.
[8] D.L. Urso, “Coronavirus disease 2019 (COVID-19): a brief report,” Clin. Manag. Issues, vol. 14, no. 1, pp. 15–19, 2020, doi:10.7175/cmi.v14i1.1467.
[9] U.A. Leon, A. Perez, and E. Vales, “An SEIARD epidemic model for COVID-19 in Mexico: mathematical analysis and state-level forecast,” Chaos Solitons Fractals, vol. 140, pp. 110-165, 2020, doi:10.1016/j.chaos.2020.110165.
[10] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan, and G. Chowell, “Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China,” J. Clin. Forensic Med., vol. 9, no. 2, pp. 13–23, 2020, doi:10.3390.jcm9020596.
[11] N. Nuraini, K. Khairuddin, and M. Apri, “Modeling simulation of COVID-19 in Indonesia based on early endemic data,” Commun. Biomath. Sci., vol. 3, no. 1, pp. 1–8, 2020, doi:10.5614/cbms.2020.3.1.1.
[12] A.S. Ahmar and E.B. Val, “Sutte-ARIMA: short-term forecasting method, a case: Covid-19 and stock market in Spain,” Sci. Total Environ., vol. 729, pp. 13-38, 2020, doi:10.1016/j.scitotenv.2020.138883.
[13] S. He, Y. Peng, and K. Sun, “SEIR modeling of the COVID-19 and its dynamics,” Nonlinear Dyn., vol. 101, pp. 1667–1680, 2020, doi: 10.1007/s11071-020-05743-y.
[14] A. Godio, F. Pace, and A. Vergnano, “SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence,” Int. J. Environ. Res. Public Health, vol. 17, no. 10, pp. 3535, 2020, doi: 10.3390/ijerph17103535.
[15] A. Ajbar and R.T.Alqahtani, “Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction,” Adv. Differ. Equ., vol. 541, 2020, doi: 10.1186/s13662-020-02997-z.
[16] S. Annas, M.I. Pratama, M. Rifandi, W. Sanusi, and S. Side, “Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia,” Chaos Solitans Fractals, vol. 139, 2020, doi: 10.1016/j.chaos.2020.110072.
[17] M. Awais, F.S. Alshammari, S. Ullah, M.A. Khan, and S. Islam, “Modeling and simulation of the novel coronavirus in Caputo derivative,” Results Phys., vol. 19, 2020, doi: 10.1016/j.rinp.2020.103588.
[18] M.A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,” Alex. Eng. J., vol. 59, no. 4, pp. 2379–2389, 2020, doi: 10.1016/j.aej.2020.02.033.
[19] M.A. Khan, A. Atangana, E. Alzahrani, and Fatmawati, “The dynamics of COVID-19 with quarantined and isolation,” Adv. Differ. Equ., vol. 425, 2020, doi: 10.1186/s13662-020-02882-9.
[20] L.C. Barros, R.C. Bassanezi, and M.B.F. Leite, “The SI epidemiological models with a fuzzy transmission parameter,” Comput. Math. Appl., vol. 45, pp. 1619–1628, 2003, doi:10.1016/S0898-1221(03)00141-X.
[21] R. Jafelice, L.C. Barros, R.C. Bassanezei, and F. Gomide, “Fuzzy modeling in symptomatic HIV virus infected population,” Bull. Math. Biol., vol. 66, pp. 1597–1620, 2004, doi: 10.1016/j.bulm.2004.03.002.
[22] E. Massad, M.N. Burattini, and N.R.S. Ortega, “Fuzzy logic and measles vaccination: designing a control strategy,” Int. J. Epidemiol., vol. 28, pp. 550–557, 1999, doi: 10.1093/ije/28.3.550.
[23] E. Massad, N.R.S. Ortega, L.C. Barros, and C.J. Struchiner, Fuzzy Logic in Action: Applications in Epidemiology and Beyond, Studies in Fuzziness and Soft Computing, Springer, Berlin, 2008, doi: 10.1007/978-3-540-69094-8.
[24] R. Verma and R.K. Tiwari, Dynamical behaviors of fuzzy SIR epidemic model. In: Advances in Fuzzy Logic and Technology, Springer, 2017, doi: 10.1007/978-3-319-66827-7_45.
[25] E. Massad, N.R.S. Ortega, L.C. de Barros, and C.J. Struchiner, “Fuzzy Dynamical Systems in Epidemic Modeling,” In: Fuzzy Logic in Action: Applications in Epidemiology and Beyond. Studies in Fuzziness and Soft Computing, 232, Springer, Berlin, Heidelberg, 2008, doi: 10.1007/978-3-540-69094-8_9.
[26] P.K. Mondal, S. Jana, P. Haldar, and T.K. Kar, “Dynamical behavior of an epidemic model in a fuzzy transmission,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 23, no. 5, pp. 651–665, 2015, doi: 10.1142/S0218488515500282.