بررسی یک مدل اپیدمیک فازی ریاضی برای انتشار ویروس کرونا در یک جمعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، دانشکده علوم پایه، دانشگاه زابل، زابل، ایران.

2 گروه ریاضی، دانشکده علوم پایه، دانشگاه فنی و حرفه‌ای، تهران، ایران.

چکیده

در این مقاله یک مدل اپیدمیک با پارامترهای فازی برای بیماری کرونا ارائه شده است. این مدل با توجه به عامل‌های واکسیناسیون، درمان، اجرای پروتکل‌های بهداشتی و میزان ویروس کرونا ساخته شده است. از پارامترهای فازی برای نرخ سرایت، نرخ بهبودی و نرخ مرگ و میر در این بیماری و در تحلیل مدل از روش ایجاد ماتریس برای محاسبه عدد مولد پایه و پایداری نقاط تعادل مدل استفاده شده است. شبیه‌سازی نتایج نشان می‌دهد جهش‌های مختلف ویروس کرونا باعث تفاوت در انتشار آن است. همچنان که عامل‌های واکسیناسیون و طرز عمل در اجرای پروتکل‌های بهداشتی به میزان قابل ملاحظه‌ای در کاهش یا توقف انتشار ویروس کرونا در یک جمعیت موثر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of a mathematical fuzzy epidemic model for the spread of corona-virus in a population

نویسندگان [English]

  • Abbas Akrami 1
  • Mahmood Parsamanesh 2
1 Department of Mathematics, Faculty of Science, University of Zabol, Zabol, Iran
2 Department of Mathematics, Faculty of Science, Technical and vocational University, Tehran, Iran
چکیده [English]

In this paper, an epidemic model with fuzzy parameters for COVID-19 is presented. This model is made according to vaccination, treatment, implementation of health protocols and the corona virus load. Fuzzy parameters for transmission rate, recovery rate and mortality rate in this disease have been used. Also, in model analysis, we have used the generation matrix method to calculate the basic reproduction number and the equilibrium stability of the model. Simulation of the results shows that different mutations in the corona virus cause differences in its propagation. In addition, vaccination and practices in the implementation of health protocols are significantly effective in reducing or stopping the spread of coronavirus in a population.

کلیدواژه‌ها [English]

  • Pandemic
  • Health protocols
  • Fuzzy number
  • Corona
  • mathematical fuzzy epidemic model
  • Vaccination
[1] پارسامنش م.، عرفانیان م.، اکرمی ع.، «مدل‌سازی انتشار بیماری‌های عفونی: ریاضیات و جمعیت»، ابن سینا، جلد 22، شماره 4، ص. 60-74، 1399.
[2] پارسامنش م.، عرفانیان م.، «دینامیک سراسری یک مدل ریاضی برای انتشار بیماری‌های عفونی با نرخ انتشار غیرخطی اشباع»، مدل‌سازی پیشرفته ریاضی، جلد 11، شماره 1، ص. 69-81، 1400.
[3] اکرمی ع.، پارسامنش م.، «مقایسه عدد مولد پایه فازی و غیرفازی در یک مدل اپیدمی برای انتشار ویروس در شبکه‌های کامپیوتری»، سیستم‌های فازی و کاربردها، جلد 2، شماره 2، ص. 109-122، 1398.
[4] آخوندی ر.، حسینی ر.، «ارایه مدل هوشمند هایبریدی فازی-تکامل ژنتیکی تفاضلی در یک سیستم خبره فازی برای پیش‌بینی خطر ابتلا به بیماری قلبی»، مجله محاسبات نرم، جلد 6، شماره 2، ص. 32-47، 1396.
[5] عباسی ح.، شمسی م.، رسولی کناری ع.، «راهکارهای تشخیص عملکرد کاربران و ارائه روشی برای تعیین میزان خطر رفتار غیرمعمول کاربران در خانه هوشمند مبتنی بر منطق فازی»، مجله محاسبات نرم، جلد 9، شماره 2، ص. 2-13، 1399.
[6] مرادی فراهانی ح.، عسگری ج.، ذکری م.، «مروری بر منطق فازی نوع-2: از پیدایش تا کاربرد»، مجله محاسبات نرم، جلد 2، شماره 1، ص. 22-43، 1392.
[7] Parsamanesh M., “The role of vaccination in controlling the outbreak of infectious diseases: a mathematical approach,” Vaccine research, 5(1): 32-40, 2018, https://doi.org/10.29252/vacres.5.1.32.
[8] Urso D.L., “Coronavirus disease 2019 (COVID-19): a brief report,” Clinical Management Issues 14(1): 15–19, 2020, https://doi.org/10.7175/cmi.v14i1.1467.
[9] Leon U.A., Perez A., and Vales E., “An SEIARD epidemic model for COVID-19 in Mexico: mathematical analysis and state-level forecast,” Chaos Solitons Fractals, 140: 110-165, 2020, https://doi.org/10.1016/j.chaos.2020.110165.
[10] Roosa K., Lee Y., Luo R., Kirpich A., Rothenberg R., Hyman J.M., Yan P., and Chowell G., “Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China,” Journal of Clinical Forensic Medicine, 9(2): 13–23, 2020, https://doi.org/10.3390.jcm9020596.
[11] Nuraini N., Khairuddin K., and Apri M., “Modeling simulation of COVID-19 in Indonesia based on early endemic data,” Communication in Biomathematical Sciences, 3(1): 1–8, 2020, https://doi.org/10.5614/cbms.2020.3.1.1.
[12] Ahmar A.S. and Val E.B., “Sutte-ARIMA: short-term forecasting method, a case: Covid-19 and stock market in Spain,” Science of the Total Environment, 729: 13-38, 2020, https://doi.org/10.1016/j.scitotenv.2020.138883.
[13] He S., Peng Y., and Sun K., “SEIR modeling of the COVID-19 and its dynamics,” Nonlinear Dynamics, 101: 1667–1680, 2020,  https://doi.org/10.1007/s11071-020-05743-y.
[14] Godio A., Pace F., and Vergnano A., “SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence,” International Journal of Environmental Research Public Health, 17(10): 3535, 2020, https://doi.org/10.3390/ijerph17103535.
[15] Ajbar A. and Alqahtani R.T., “Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction,” Advances in Difference Equations, 541, 2020, https://doi.org/10.1186/s13662-020-02997-z.
[16] Annas S., Pratama M.I., Rifandi M., Sanusi W., and Side S., “Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia,” Chaos Solitans Fractals, 139, 2020, https://doi.org/10.1016/j.chaos.2020.110072.
[17] Awais M., Alshammari F.S., Ullah S., Khan M.A., and Islam S., “Modeling and simulation of the novel coronavirus in Caputo derivative,” Results in Physics, 19, 2020, https://doi.org/10.1016/j.rinp.2020.103588.
[18] Khan M.A. and Atangana A., “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,” Alexandria Engineering Journal, 59(4): 2379–2389, 2020, https://doi.org/10.1016/j.aej.2020.02.033.
[19] Khan M.A., Atangana A., Alzahrani E., and Fatmawati, “The dynamics of COVID-19 with quarantined and isolation,” Advances in Difference Equations, 425, 2020, https://doi.org/10.1186/s13662-020-02882-9.
[20] Barros L.C., Bassanezi R.C., and Leite M.B.F., “The SI epidemiological models with a fuzzy transmission parameter,” Computers and Mathematics with Applications, 45: 1619–1628, 2003, https://doi.org/10.1016/S0898-1221(03)00141-X.
[21] Jafelice R., Barros L.C., Bassanezei R.C., and Gomide F., “Fuzzy modeling in symptomatic HIV virus infected population,” The Bulletin of Mathematical Biology, 66: 1597–1620, 2004, https://doi.org/10.1016/j.bulm.2004.03.002.
[22] Massad E., Burattini M.N., and Ortega N.R.S, “Fuzzy logic and measles vaccination: designing a control strategy,” International Journal of Epidemiology, 28: 550–557, 1999, https://doi.org/10.1093/ije/28.3.550.
[23] Massad E., Ortega N.R.S., Barros L.C., and Struchiner C.J., Fuzzy Logic in Action: Applications in Epidemiology and Beyond, Studies in Fuzziness and Soft Computing, Springer, Berlin, 2008, https://doi.org/10.1007/978-3-540-69094-8.
[24] Verma R. and Tiwari R.K., Dynamical behaviors of fuzzy SIR epidemic model. In: Advances in Fuzzy Logic and Technology, Springer, 2017, https://doi.org/10.1007/978-3-319-66827-7_45.
[25] Massad E., Ortega N.R.S., de Barros L.C., and Struchiner C.J., “Fuzzy Dynamical Systems in Epidemic Modeling,” In: Fuzzy Logic in Action: Applications in Epidemiology and Beyond. Studies in Fuzziness and Soft Computing, 232, Springer, Berlin, Heidelberg, 2008, https://doi.org/10.1007/978-3-540-69094-8_9.
[26] Mondal P.K., Jana S., Haldar P., and Kar T.K., “Dynamical behavior of an epidemic model in a fuzzy transmission,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 23(5): 651–665, 2015, https://doi.org/10.1142/S0218488515500282.