[1] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eulerian fluid simulation with convolutional networks,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.
[2] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: A navierstokes informed deep learning framework for assimilating flow visualization data,” CoRR, vol. abs/1808.04327, 2018, doi: 10.48550/arXiv.1808.04327.
[3] M. Edalatifar, M. B. Tavakoli, M. Ghalambaz, and F. Setoudeh, “Using deep learning to learn physics of conduction heat transfer,” J. Therm. Anal. Calorim., vol. 146, pp. 1435–1452, 2021, doi: 10.1007/s10973-020-09875-6.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 1106–1114.
[5] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y.Wu, Z. Chen, N. Thorat, F. B. Viegas, M.Wattenberg, G. Corrado, M. Hughes, and J. Dean, “Google’s multilingual neural machine translation system: Enabling zero-shot translation,” Trans. Assoc. Comput. Linguistics, vol. 5, pp. 339–351, 2017, doi: 10.1162/TACL_A_00065.
[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[7] H. El-Amir and M. Hamdy, Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow. Apress Berkeley, CA, 2020, doi: 10.1007/978-1-4842-5349-6.
[8] S. Afzali, M. K. Moayyedi, and F. Fotouhi, “Development of an equation-free reduced-order model based on different feature extraction patterns on the two-dimensional steady-state heat transfer dataset,” Soft Comput. J., vol. 10, no. 1, pp. 16–31, 2021, doi: 10.22052/scj.2021.242830.0 [In Persian].
[9] O. Ronneberger, P. Fischer, and T. Brox, “Unet: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, ser. Lecture Notes in Computer Science, N. Navab, J. Hornegger, W. M. W. III, and A. F. Frangi, Eds., vol. 9351. Springer, 2015, pp. 234–241, doi: 10.1007/978-3-319-24574-4_28.
[10] R. Sharma, A. B. Farimani, J. Gomes, P. K. Eastman, and V. S. Pande, “Weakly-supervised deep learning of heat transport via physics informed loss,” CoRR, vol. abs/1807.11374, 2018, doi: 10.48550/arXiv.1807.11374.