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A B S T R A C T

Due to the high computational cost of the direct numerical simulation
methods of the governing equations of some natural phenomena, surrogate
models based on machine learning methods such as deep learning algorithms
have been commonly interested in modeling these phenomena. This paper
proposes a reduced-order model based on a deep-learning algorithm to simulate
temperature changes in a two-dimensional field. This model is developed
using three different methods, including a framework based on convolutional
neural networks, a physics-informed loss function of the phenomenon, and a
reduced-order model using the autoencoder method. The model outcomes were
compared with the results obtained from a high-resolution finite difference
method. The results show that the reduced-order model (with an accuracy of
2.528×10−6 ◦C) has higher accuracy than the other two models. Meanwhile, the
Model-based physics-informed loss is superior to the other two models in terms
of steady-state temperature data consumption (only 400 data of size 8× 8).

2322-3707 / c© 2022 The Authors. Open access article under the CC BY license.

1 Introduction

Partial differential equations are one of the main
tools in modeling many phenomena in real life. Some
phenomena in nature do not have a definite physi-
cal equation and any changes in its behavior cannot
be interpreted by a comprehensive law. In addition,
many of the governing equations are nonlinear and
have complex partial differential equations, so their
solution obtained very difficult and usually cannot be
solved by mathematical methods. The numerical solu-
tion of these equations needs large computation time.
In return, deep learning algorithms can instantly sim-
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ulate complex phenomena without any knowledge of
the governing laws [1–3]. Unlike conventional meth-
ods, deep-learning models learn to use data-driven
methods to generate realistic solutions and greatly re-
duce the amount of required computation while they
have high accuracy. Deep learning algorithms can be
used to infer and simulate any dynamic phenomenon
by receiving data from observations or simulations.
They can also be utilized directly to learn and predict
phenomena which are complex or still unknown.

In recent years, many advances in machine vision
and natural language processing have been made
through deep learning [4–6]. Deep learning methods
with the possibility of encrypting appropriate infor-
mation about the dynamics of the system on the
neural network make it possible to teach the neural
network how the dynamic system works. Even if it
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is unknown and does not have access to the physical
laws of the dynamical system data, it performs mod-
eling of complex systems faster, more accurately and
with lower computational cost. According to Andrew
Ng, founder, and leader of Google Brain, “Deep learn-
ing is like a rocket that its engine is deep learning
models, and its fuel are huge amounts of data that
are fed to these algorithms” [7].

The present study investigates the simulation of
the heat transfer in a two-dimensional field. In the
2D heat transfer problem, we consider a square plate
made of some thermally conductive material that
is insulated along its edges. Heat is applied to the
plate in some way, and our goal is to model the way
that thermal energy moves through the plate. The
initial condition is given by T (x, y, 0), and we want
to determine the temperature field on the plate over
time. Under ideal assumptions, it can be shown that
temperature satisfies the following two-dimensional
heat diffusion equation:

∂T

∂t
= C2∇2T = C2(

∂2T

∂x2
+

∂2T

∂y2
) (1)

where C > 0 is a constant for the thermal conductivity
of the plate. We want to study the solutions that
do not vary with time, known as the steady-state
solution of the system:

∂T

∂t
= 0 (2)

Therefore, the Laplace equation is obtained as follows:

∂2T

∂x2
+

∂2T

∂y2
= 0 (3)

One of the methods that can be used to simulate
heat transfer is based on reduced-order models. This
method focuses exclusively on the important point
of potentially reducing the computational and time
costs of simulation [8]. For this purpose, it presents
an equation-free reduced order model that uses di-
mension reduction methods to faster simulation of
the steady-state heat transfer.

This research focuses on developing a data-driven
model for simulating the two-dimensional steady-state
heat transfer according to the variations of boundary
conditions. The goal is to introduce and analyze differ-
ent methods based on deep learning algorithms to be
used instead of complex and time-consuming numeri-
cal or direct solutions to the governing equations. In
this work, these methods are evaluated from broader
aspects such as accuracy and data consumption in
addition to time and computational cost aspects, and
the best and most efficient ones in that aspect are
introduced. The methods and models presented in
this research have been implemented using the tools
and libraries available in Python.

2 Surrogate model based on deep
learning algorithms

This section introduces the models based on the
deep learning algorithms. These models include a
model-based convolutional neural network, a physics-
informed loss function of the phenomenon and a
reduced-order model using the autoencoder method.

2.1 Model-based convolutional neural
network

This method uses a network consisting of multiple
convolutional layers, which produce the steady-state
temperature distribution by receiving the desired
boundary conditions. The training of this network is
done in a supervised method, where the data with
different boundary conditions are used in the form
of a two-dimensional vector as input and the cor-
responding steady-state temperature data as labels.
This model can predict two-dimensional steady-state
temperature distribution as a vector.

The network architecture used in this model
consists of a two-dimensional convolutional encoder-
decoder network adapted from the U-Net architecture
in reference [9]. Ten thousand steady-state tempera-
ture data in size of 64×64 have been used to train
this network.

2.2 Model-based convolutional kernel

The aim of this method is to train a fully convolu-
tional neural network to directly infer the solution to
the Laplace equation (Eq. 3), when given the bound-
ary conditions as input [10]. This is accomplished
without ever seeing solutions to the boundary prob-
lem by encoding the differential equations into a
physics-informed loss function, which motivates the
main network to find the solution without using su-
pervision in the form of data. The architecture of the
network is the same as the U-Net architecture used
in the previous model. Table 1 shows the kernel con-
taining the equilibrium conditions pattern obtained
from training the network (on 400 data of size 8×8)
which is used to train the main network through the
loss function defined in Eq. 4.

loss = mean(Conv2D(kernel, output))2 (4)

Table 1. The kernel resulting from the training of the
network [10].

Result

3.45× 10−7 −2.52× 10−2 2.21× 10−6

−2.52× 10−2 1.01× 10−1 −2.52× 10−2

3.24× 10−5 −2.51× 10−2 3.20× 10−7
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Fig. 1. Results of steady-state temperature distribution using different methods in different boundary conditions in the size
of 64×64: (a) control volume with the relevant boundary conditions, (b) correct outputs (finite difference method), (c) model
based on convolutional neural network, (d) model-based physics-informed loss function of the phenomenon, and (e) model
using the autoencoder method.

2.3 Reduced-order model

In the first step of the model development, the steady-
state heat transfer data with different boundary condi-
tions (containing 10,000 data in the size of 64×64) are
collected. After normalization and conversion to one-
dimensional vectors, it projects on a low-dimensional
space using the autoencoder method. We then use
different boundary conditions as training data and
the data generated with a low dimensional model as
a label for training a network consisting of dense lay-
ers. This network predicts the steady-state temper-
ature distribution as a reduced vector by receiving
the desired boundary conditions in the form of four
temperatures related to the 4 faces of the desired con-
trol volume. In the next step, in order to obtain the
steady-state temperature in the high dimensions, the
pattern extracted from the training data is applied
to the data generated from the network using the
desired dimension reduction method in the opposite
direction (to increase the dimensions).

3 Results

Fig. 1 shows the results of steady-state heat transfer
modeling in size of 64×64 using different methods.
The results demonstrate that the error in terms
of the mean squared error for the model based
on the convolutional neural network, based on the
physics-informed loss function of the phenomenon
and reduced-order model using the autoencoder
method are equal to 0.015, 0.23 and 2.528×10−6 ◦C
per-pixel, respectively.

4 Conclusion

In this paper, three methods based on deep learning
algorithms are used to simulate the steady-state heat
transfer in size of 64×64. The results are compared
with the high-resolution finite difference method (as
the exact data). According to the results, reduced or-
der models using the autoencoder method and model-
based convolutional neural network have higher mod-
eling accuracy. However, both models used large
amounts of data to simulate steady-state heat transfer.
In contrast, the model based on the physics-informed
loss function of the phenomenon, despite its lower
accuracy, requires much less data (only 400 data of
size 8×8) to model steady-state heat transfer.

Conflict of interest

The authors declare that they have no conflict of
interest.

References

[1] J. Tompson, K. Schlachter, P. Sprechmann, and
K. Perlin, “Accelerating eulerian fluid simulation
with convolutional networks,” in 5th Interna-
tional Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings. OpenReview.net,
2017.

[2] M. Raissi, A. Yazdani, and G. E. Karni-
adakis, “Hidden fluid mechanics: A navier-
stokes informed deep learning framework



16 S. Afzali et al. / Reduced order framework for 2D heat transfer simulation under variations of boundary ...

for assimilating flow visualization data,”
CoRR, vol. abs/1808.04327, 2018, doi:
10.48550/arXiv.1808.04327.

[3] M. Edalatifar, M. B. Tavakoli, M. Ghalambaz,
and F. Setoudeh, “Using deep learning to learn
physics of conduction heat transfer,” J. Therm.
Anal. Calorim., vol. 146, pp. 1435–1452, 2021,
doi: 10.1007/s10973-020-09875-6.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Infor-
mation Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held De-
cember 3-6, 2012, Lake Tahoe, Nevada, United
States, P. L. Bartlett, F. C. N. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds.,
2012, pp. 1106–1114.

[5] M. Johnson, M. Schuster, Q. V. Le, M. Krikun,
Y. Wu, Z. Chen, N. Thorat, F. B. Viégas, M. Wat-
tenberg, G. Corrado, M. Hughes, and J. Dean,
“Google’s multilingual neural machine translation
system: Enabling zero-shot translation,” Trans.
Assoc. Comput. Linguistics, vol. 5, pp. 339–351,
2017, doi: 10.1162/TACL_A_00065.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016.

[7] H. El-Amir and M. Hamdy, Deep Learning
Pipeline: Building a Deep Learning Model with
TensorFlow. Apress Berkeley, CA, 2020, doi:
10.1007/978-1-4842-5349-6.

[8] S. Afzali, M. K. Moayyedi, and F. Fotouhi,
“Development of an equation-free reduced-order
model based on different feature extraction pat-
terns on the two-dimensional steady-state heat
transfer dataset,” Soft Comput. J., vol. 10, no. 1,
pp. 16–31, 2021, doi: 10.22052/scj.2021.242830.0
[In Persian].

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-
net: Convolutional networks for biomedical im-
age segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention - MIC-
CAI 2015 - 18th International Conference Mu-
nich, Germany, October 5 - 9, 2015, Proceedings,
Part III, ser. Lecture Notes in Computer Science,
N. Navab, J. Hornegger, W. M. W. III, and A. F.
Frangi, Eds., vol. 9351. Springer, 2015, pp. 234–
241, doi: 10.1007/978-3-319-24574-4_28.

[10] R. Sharma, A. B. Farimani, J. Gomes, P. K.
Eastman, and V. S. Pande, “Weakly-supervised
deep learning of heat transport via physics in-
formed loss,” CoRR, vol. abs/1807.11374, 2018,
doi: 10.48550/arXiv.1807.11374.


	1 Introduction
	2 Surrogate model based on deep learning algorithms
	2.1 Model-based convolutional neural network
	2.2 Model-based convolutional kernel
	2.3 Reduced-order model

	3 Results
	4 Conclusion

