استفاده از الگوریتم بهینه‌سازی لاشخور برای آستانه‌گیری چندسطحی تصاویر سی‌تی‌اسکن مغز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی برق، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

چکیده

بخش‌بندی تصاویر به فرآیند تقسیم کردن یک تصویر دیجیتال به چند بخش گفته می‌شود. هدف بخش‌بندی، ساده‌سازی و یا تغییر در نمایش یک تصویر به چیزی است که معنادارتر و هم برای تحلیل آسان‌تر است. روش‌های آستانه‌گذاری با داشتن پیچیدگی بسیار کمتر در مقایسه با روش‌های نوین مبتنی بر یادگیری عمیق همچنان کاربرد گسترده‌ای دارند. در این مقاله یک الگوریتم جدید آستانه‌گیری چندسطحی، برای قطعه‌بندی تصاویر سی‌تی‌اسکن مبتنی بر هیستوگرام ارائه شده است. در الگوریتم پیشنهادی، آستانه‌گیری تصویر با استفاده از روش نوین الگوریتم بهینه‌سازی لاشخور انجام شده است. در الگوریتم بهینه‌سازی لاشخور فرآیند اکتشاف و بهره‌برداری با تعریف چند نوع لاشخور با توانایی‌های متفاوت حاصل می‌شود. آنتروپی به عنوان تابع برازندگی جهت قطعه‌بندی چندسطحی تصاویر با استفاده از الگوریتم لاشخور استفاده گردید. الگوریتم پیشنهادی با دو الگوریتم بهینه‌سازی تکاملی یعنی الگوریتم ذرات و نوع بهبود یافته‌ای از الگوریتم ذرات که بر مبنای سیستم چندعاملی فازی می‌باشد، مقایسه شده است. این مقایسه بر روی یک مجموعه تصاویر سی‌تی‌اسکن بیانگر برتری روش پیشنهادی در توابع برازندگی به میزان متوسط 8 درصد می‌باشد. علاوه بر این، مقدار کیفیت تصاویر بخش‌بندی‌ شده بهبودی به طور متوسط در تصاویر دوبخشی حدود 3 درصد و در تصاویر پنج‌بخشی به طور متوسط 12 درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Using the buzzard optimization algorithm for multilevel thresholding of brain CT images

نویسندگان [English]

  • Ali Arshaghi 1
  • Mohsen Ashourian 2
  • Leila Ghabeli 1
1 Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Electrical Engineering, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
چکیده [English]

The process of image segmentation involves dividing a digital image into multiple parts to simplify or change its representation into something more meaningful and easier to analyze. Although modern deep learning-based methods have emerged, thresholding methods remain widely used due to their significantly lower complexity. In this paper, a new multilevel thresholding algorithm for histogram-based segmentation of CT images is presented. In the proposed algorithm, image thresholding is performed using the recently introduced buzzard optimization (BUZO) algorithm. In BUZO, the process of exploration and exploitation is achieved by defining several types of buzzards with different capabilities. Entropy, as the fitness function of the BUZO algorithm, is used to perform multilevel image segmentation. The proposed algorithm is compared with two evolutionary optimization algorithms: particle swarm optimization (PSO) and an improved version of PSO based on the fuzzy multi-agent system. The comparison on a set of CT images shows an average 8% superiority of the proposed method in fitness functions. Moreover, the quality of segmented images shows approximately 3% and 5% improvement in two- and five-level segmented images, respectively.

کلیدواژه‌ها [English]

  • Image segmentation
  • Buzzard optimization algorithm
  • Optimization
  • Metaheuristic
[1] Wirsching H.G. and Weller M., “Basics of Brain Tumor Biology for Clinicians,” In Neurorehabilitation in Neuro-Oncology, pp. 7-19. Springer, Cham, 2019, https://doi.org/10.1007/978-3-319-95684-8_2.
[2] Faisal A., Parveen S., Badsha S., Sarwar H., and Reza A. W., “Computer assisted diagnostic system in tumor radiography,” Journal medical system, 37: 1-10, 2013, https://doi.org/10.1007/s10916-013-9938-3.
[3] Mittal K., Shekhar A., Singh P., and Kumar M., “Brain Tumour Extraction using Otsu Based Threshold Segmentation,” International Journal of Advanced Research in Computer Science and Software Engineering, 7: 159-163, 2017, http://dx.doi.org/10.23956/ijarcsse/V7I4/0145.
[4] Chouksey M., Jha R. K., Sharma R., “A fast technique for image segmentation based on two Meta-heuristic algorithms,” Multimedia Tools and Applications, 79: 19075-19127, 2020, https://doi.org/10.1007/s11042-019-08138-3.
[5] Arshaghi A., Ashourian M., and Ghabeli L., “Feature selection based on buzzard optimization algorithm for potato surface defects detection,” Multimedia Tools and Applications, 79: 26623-26641, 2020, https://doi.org/10.1007/s11042-020-09236-3.
[6] Arshaghi A., Ashourian M., and Ghabeli L., “Detection of Skin Cancer Image by Feature Selection Methods Using New Buzzard Optimization (BUZO) Algorithm,” Traitement du Signal, 37(2): 81-194, 2020, http://dx.doi.org/10.18280/ts.370204.
[7] Golpardaz M., Helfroush M. S., and Danyali H., “A new conditional random field based on mixture of generalized Gaussian model for synthetic aperture radar image segmentation,” International Journal of Remote Sensing, 42(12): 4739-4757, 2021, https://doi.org/10.1080/01431161.2021.1899336. 
[8] Wang X., Pan J.-S., and Chu S-C., “A Parallel Multi-Verse Optimizer for Application in Multilevel Image Segmentation,” IEEE Access, 8: 32018-32030, 2020, https://doi.org/10.1109/ACCESS.2020.2973411.
[9] Alwerfali H. S. N., Al-qaness M. A. A., Elaziz M. A., Ewees A. A., Oliva D., and Lu S., “Multi-Level Image Thresholding Based on Modified Spherical Search Optimizer and Fuzzy Entropy,” Entropy, 22(3): 328,  2020, https://doi.org/10.3390/e22030328.
[10] Abdel-Basset M., Chang V., Mohamed R., “A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems,” Neural Computing and Applications, 33: 10685-10718, 2021, https://doi.org/10.1007/s00521-020-04820-y.
[11] Xie K., Cui Y., Wang C., Cui G., Wang G., Qiu X., and Wang J., “Study on threshold selection method of continuous flame images of spray combustion in the low-pressure chamber,” Case Studies in Thermal Engineering, 26:101195, 2021, https://doi.org/10.1016/j.csite.2021.101195.
[12] Henila M. and Chithra P., “Segmentation using fuzzy cluster-based thresholding method for apple fruit sorting,” IET Image Processing, 14: 4178-4187, 2020, https://doi.org/10.1049/iet-ipr.2020.0705.
[13] موسوی راد س. ج.، ابراهیم پور کومله ح.، «آستانه‌گذاری بهینه چندسطحی تصویر با استفاده از الگوریتم بهینه‌سازی مبتنی بر یادگیری و تدریس»، ماشین بینایی و پردازش تصویر، جلد 2، شماره 2، ص.51-62، 1394.
[14] محمدپور م.، مینایی بیدگلی ب.، پروین ح.، «ارائه یک الگوریتم فرا اکتشافی جدید مبتنی بر رفتار پرنده تیهو برای حل مسائل بهینه‌سازی پویا»، مجله محاسبات نرم، جلد 8، شماره 2، ص.38-65، 1398.
[15] سلیمی سرتختی ج.، گلی بیدگلی س.، «ارائه یک الگوریتم ترکیبی با استفاده از الگوریتم کرم شب‌تاب، الگوریتم ژنتیک و جست‌وجوی محلی»، مجله محاسبات نرم، جلد 8، شماره 1، ص.14-28، 1398.
[16] آخوندی ر.، حسینی ر.، «ارایه مدل هوشمند هایبریدی فازی-تکامل ژنتیکی تفاضلی در یک سیستم خبره فازی برای پیش‌بینی خطر ابتلا به بیماری قلبی»، مجله محاسبات نرم، جلد 6، شماره 2، ص.32-47، 1396.
[17] Aghamohseni A., Faez K., and Gholamian M., “A Multi-agent Fuzzy PSO for image segmentation using multilevel thresholding,” In 13th Iranian Conference on fuzzy system, Qazvin Islamic Azad university, 2013, http://dx.doi.org/10.13140/RG.2.1.2624.2641.
[18] Calvaresi D., Cid Y. D., Marinoni M., Dragoni A. F., Najjar A., and Schumacher M., “Real-time multi-agent systems: rationality, formal model, and empirical results,” Autonomous Agents and Multi-Agent Systems, 35(12), 2021, https://doi.org/10.1007/s10458-020-09492-5.
[19] Dorri A., Kanhere S. S., and Jurdak R., “Multi-agent systems: A survey,” IEEE Access, 6: 28573-28593, 2018,https://doi.org/10.1109/ACCESS.2018.2831228.
[20] Sharif M., Amin J., Raza M., Yasmin M., and Satapathy S. C., “An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor,” Pattern Recognition Letters, 129: 150-157, 2020, https://doi.org/10.1016/j.patrec.2019.11.017.
[21] Yang Z. and Wu A., “A non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentation,” Neural Computing and Applications, 32: 12011-12031, 2020, https://doi.org/10.1007/s00521-019-04210-z.
[22] Arshaghi A., Ashourian M., and Ghabeli L., “Buzzard Optimization Algorithm: A Nature-Inspired Metaheuristic Algorithm,” Majlesi Journal of Electrical Engineering, 13(3): 83-98, 2019.
[23] Kumar S. and Chaturvedi D. K., “Tuning of Particle Swarm Optimization Parameter Using Fuzzy Logic,” In 2011 IEEE International Conference on Communication Systems and Network Technologies, 2011, https://doi.org/10.1109/CSNT.2011.44.
[24] Lin G., Li H., Ma H., Yao D., and Lu R., “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA Journal of Automatica Sinica, 9(1): 111-122, 2022, https://doi.org/10.1109/JAS.2020.1003596.
[25] Herrera M., Pérez-Hernandez M., Parlikad A. K., and Izquierdo J., “Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering,” Processes, 8, 2020, https://doi.org/10.3390/pr8030312.
[26] Du H., Wen G., Wu D., Cheng Y., and Lü J., “Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems,” Automatica, 113: 108797, 2020, https://doi.org/10.1016/j.automatica.2019.108797.
[27] Panda R., Samantaray L., Das A., Agrawal S., and Abraham A., “A novel evolutionary row class entropy based optimal multi-level thresholding technique for brain MR images,” Expert Systems with Applications, 168: 114426, 2021, https://doi.org/10.1016/j.eswa.2020.114426.
[28] Resma K. P. B. and Nair M. S., “Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm,” Journal of King Saud University - Computer and Information Sciences, 33(5): 528-541, 2018, https://doi.org/10.1016/j.jksuci.2018.04.007.
[29] Chakraborty S., Mali K., Banerjee A., and Bhattacharjee M., “A Biomedical Image Segmentation Approach Using Fractional Order Darwinian Particle Swarm Optimization and Thresholding,” Advances in Smart Communication Technology and Information Processing. Lecture Notes in Networks and Systems, 165: 299-306, 2021, https://doi.org/10.1007/978-981-15-9433-5_29.
[30] Allioui H., Sadgal M., and Elfazziki A., “Optimized control for medical image segmentation: improved multi-agent systems agreements using Particle Swarm Optimization,” Journal of Ambient Intelligence and Humanized Computing, 12: 8867–8885, 2021, https://doi.org/10.1007/s12652-020-02682-9.
[31] Mahajan S., Mittal N., and Pandit A. K., “Image segmentation using multilevel thresholding based on type II fuzzy entropy and marine predators algorithm,” Multimedia Tools and Applications, 80: 19335–19359, 2021, https://doi.org/10.1007/s11042-021-10641-5.
[32] Cancer imaging archive, 2022, Online: https://www.cancerimagingarchive.net/, (Accessed: 2022).
[33] Shahabi F., Poorahangaryan F., Edalatpanah S. A., and Beheshti H., “A Multilevel Image Thresholding Approach Based on Crow Search Algorithm and Otsu Method,” International Journal of Computational Intelligence and Applications, 19(2): 2050015, 2020, https://doi.org/10.1142/S1469026820500157.