ارائه روشی خودکار جهت مدیریت عدم قطعیت و استخراج دانش در قالب مجموعه قوانین از داده‌ها با استفاده از الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی کامپیوتر، موسسه آموزش عالی توس، مشهد، ایران

2 دانشجوی دکتری، دانشکده فنی و مهندسی، گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

3 دانشکده فنی و مهندسی، گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد شهر قدس، تهران، ایران

چکیده

در دهه اخیر کاربرد تکنیک‌های داده‌کاوی و روش‌های هوشمند جهت استخراج دانش به‌صورت خودکار از مجموعه انبوه داده‌ها مورد توجه پژوهش‌های زیادی قرار گرفته است. باتوجه به ساختار نمایش دانش مبتنی برقوانین و قابلیت تفسیر بالای این روش در بیان الگوهای پنهان در اطلاعات، استخراج الگوهای پنهان در قالب مجموعه قوانین، از اهمیت بالایی در سیستم‌های هوشمند تصمیم یار برخوردار است. این مقاله به ارائه روشی خودکار جهت استخراج قوانین به صورت مستقیم از روی مجموعه داده‌ها می‌پردازد. در روش پیشنهادی از امکان و قابلیت مدیریت عدم قطعیت تثوری مجموعه‌های فازی در مدل‌سازی قوانین استفاده شده است. به منظور رسیدن به مجموعه قوانین  بهینه فازی، از الگوریتم ژنتیک استفاده شده و علاوه برکاهش مجدد قوانین تکراری، بهبود قوانین فازی بر روی آن‌ها انجام شده است. به منظور ارزیابی، روش فازی-ژنتیک پیشنهادی بر روی هفت مجموعه داده مشهور پیاده‌سازی و بر اساس روش تحلیل Accuracy ارزیابی شده است. نتایج به‌دست آمده بیانگر کارآ بودن روش پیشنهادی در مجموع است.

کلیدواژه‌ها


عنوان مقاله [English]

An automatic Model for Managing Uncertainty and Rule Extraction in Form of Fuzzy Rules using Genetic Algorithm

نویسندگان [English]

  • Elham Afarande 1 2
  • Rahil Hosseini 3
1 Department of Computer Engineering, Toos Institute of Higher Education, Mashhad, Iran
2 PhD Student, Faculty of Engineering, Department of Computer Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran
3 Faculty of Engineering, Department of Computer Engineering, Islamic Azad University, Ghods Branch, Tehran, Iran
چکیده [English]

In the last decade, the application of data mining techniques and intelligent methods for extracting knowledge automatically from the massive datasets has received a lot of attention. Considering the rule-based knowledge representation structure and its high capability for interpreting hidden patterns in information, the extraction of hidden patterns in the form of a set of rules plays an important role in intelligent decision-making systems. After the pre-processing step, this article first presents the method of extracting rules directly from the data set and then examines the technique of extracting rules by the fuzzy classification method using the set of rules that was obtained in the previous step. At this stage, inconsistent, repetitive, and contradictory rules are removed. Since one of the challenges in intelligent systems with the capability of managing uncertainty issues such as fuzzy systems, is that training does not take place for them, we use the genetic algorithm to improve fuzzy rules in order to obtain the optimal set of rules. The proposed Fuzzy-Genetic method was applied to five well-known datasets where for three of them, results were more efficient than the SVM classical classification and Naïve Byes regression methods.

کلیدواژه‌ها [English]

  • Uncertainty Classification Methods
  • Fuzzy Classification Rules
  • Improve Fuzzy Rules With GA
[1] Bodenhofer U., “Tuning Of Fuzzy Systems Using Genetic Algorithms”, A thesis submitted to ProfErich Peter Klement in partial satisfaction of the requirements for the obtainment of the academic degree of Diplom Ingenieur der Studienrichtung Technische Mathematik, 1996.
[2] Cordón O., “A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems”, International Journal of Approximate Reasoning 52 (6):894–913, 2011, https://doi.org/10.1016/j.ijar.2011.03.004.
[3] De Jong K. A., “Learning with genetic algorithms: an overview”, Machine Learning 3 (3):121–138, 1988, https://doi.org/10.1007/BF00113894.
[4] Casillas J., Cordón O., Herrera F., Magdalena L. (Eds.), Interpretability Issues in Fuzzy Modeling, Springer, 2003, https://doi.org/10.1007/978-3-540-37057-4.
[5] Ishibuchi H., Nakashima T., Murata T., “comparison of the Michigan and Pittsburgh approach to the design of classification systems”, electronic and communications in japan 80 (12):10-19, 1997, http://dx.doi.org/10.1002/(SICI)1520-6440(199712)80:123.0.CO;2-W.
[6] Fernández A., del Jesus M. J., Herrera F., “On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets”, Information Sciences 180 (8):1268–1291, 2010, https://doi.org/10.1016/j.ins.2009.12.014.
[7] Tan P.-N., Steinbach M. S., Karpatne A., Kumar V., Introduction to Data Mining, Pearson, 2nd Edition, 2019.
[8] Verma N.K., Singh V., Rajurkar S., Aqib M., “Fuzzy Inference Network with Mamdani Fuzzy Inference System”, In: Verma N., Ghosh A. (eds) Computational Intelligence: Theories, Applications and Future Directions -Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, 2019, https://doi.org/10.1007/978-981-13-1132-1_29.
[9] Kumar A., Venkateswaran J., “Reverse Sequential Covering Algorithm for Medical Data Mining“, Procedia Computer Science 47:109-117, 2015, http://dx.doi.org/10.1016/j.procs.2015.03.189.
[10] Wang L.-X., Mendel J. M., “Generating fuzzy rules by learning from examples”, IEEE Transactions on Systems, Man, and Cybernetics 22(6):1414-1427, 1992, https://doi.org/10.1109/21.199466.
[11] Sanz J. A., Fernández A., Sola H. B., Herrera F., “A genetic tuning to improve the performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets”, International Journal of Approximate Reasoning 52(6):751–766, 2011, https://doi.org/10.1016/j.ijar.2011.01.011.
[12] Cordona O., Gomide F. A. C., Herreraa F., Hoffmann F., Magdalenad L., “Ten years of genetic fuzzy systems: current framework and new trends”, Fuzzy Sets and Systems, 141(1):5–31, 2004, https://doi.org/10.1016/S0165-0114(03)00111-8.
[13] Casillas J., Cordón O., del Jesus M. J., Herrera F., “Genetic Tuning of Fuzzy Rule Deep Structures Preserving Interpretability and Its Interaction With Fuzzy Rule Set Reduction”, IEEE Transaction on Fuzzy Systems 13(1):13-29, 2005, https://doi.org/10.1109/TFUZZ.2004.839670.
[14] Ishibuchi H., Nakashima T., Murata T. “A fuzzy classifier system that generates linguistic rules for pattern classification problems”, IEEE/Nagoya-University World Wisepersons Workshop, 35-54, 1995, https://doi.org/10.1007/3-540-61988-7\_15.
[15] Herrera F. “Genetic fuzzy systems: taxonomy, current research trends and prospects”, Evolutionary Intelligence, 1(1):27-46, 2008, https://doi.org/10.1007/s12065-007-0001-5.
[16] Castro P. A. D., Camargo H. D. A., “Improving the genetic optimization of fuzzy rule base by imposing a constraint condition on the number of rules”, congresso da sociedade brasileira de computacao December 2004.
[17] https://www.kaggle.com/datasets
[18] https://archive.ics.uci.edu/ml/datasets.php
[19] Tan C. H., Yap K. S., Yap H. J., “Application of   genetic algorithm for fuzzy rules optimization on semi expert judgment automation using Pittsburg approach”, Applied Soft Computing 12(8): 2168–2177, 2012, https://doi.org/10.1016/j.asoc.2012.03.018.
[20] Soui M., Gasmi I., Smiti S., Ghédira K., “Rule-based credit risk assessment model using multi-objective evolutionary algorithms”, Expert Systems With Applications 126:144–157, 2019, https://doi.org/10.1016/j.eswa.2019.01.078.
[21] Han J., Kamber M., Pei J., “Data Mining Concepts and Techniques”, Third Edition, the Morgan Kaufmann Series in DataManagement Systems, 2011.
[22] Kulluk S., Özbakır L., Baykasoğlu A., “Fuzzy difaconn-miner: a novel approach for fuzzy rule extraction from neural networks” Expert Syst. Appl., 40(3): 938-946, 2013, https://doi.org/10.1016/j.eswa.2012.05.050.
[23] Ganapathy S., Sethukkarasi R., Yogesh P., Vijayakumar P., Kannan A., ”An intelligent temporal pattern classification system using fuzzy temporal  rules and particle swarm optimization”, Sadhana, 39(2): 283-302, 2014, https://doi.org/10.1007/s12046-014-0236-7.
[24] Koshiyama A.S., Vellasco M.M.B.R., Tanscheit R., “GPFIS-class. A genetic fuzzy system based on genetic programming for classification problems”, Appl. Soft Comput., 37:561-571, 2015, https://doi.org/10.1016/j.asoc.2015.08.055.
[25] Zhu L., Qiu D., Ergu D., Ying C., Liu K., “A study on predicting loan default based on the random forest algorithm”, 7th International Conference on Information Technology and Quantitative Management, ITQM 2019, https://doi.org/10.1016/j.procs.2019.12.017.
[26] Safari A., Mazinani M., Hossein R., “A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster“, IJE 30(11):1746-1751, 2017.
[27] Hosseini R., Qanadli S. D., Barman S., Mazinani M., Ellis T., Dehmeshki J., “An Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy Membership Functions Applied to Lung CAD Classification System”, IEEE Transactions on Fuzzy Systems 27(8), 2019, https://doi.org/10.1109/TFUZZ.2019.2921503.
[28] آخوندی ر.، حسینی ر.، «ارایه مدل هوشمند هایبریدی فازی-تکامل ژنتیکی تفاضلی در یک سیستم خبرة فازی برای پیش بینی خطر ابتلا به بیماری قلبی»، مجله محاسبات نرم، جلد 6، شماره 2، ص 32-47،  1396.
[29] قاسم‌احمد ل.، «مروری بر 7 الگوریتم برتر داده کاوی در پیش‌بینی مبتلایان به سرطان»، فصلنامه بیماری‌های پستان ایران، سال ششم، شماره اول، بهار 1392.
[30] لنگری‌زاده م.، مقبلی ف.، «مرور نظام‌مند کاربرد شبکه بیزین ساده در پیش‌بینی بیماری‌ها»، مجله انفورماتیک سلامت و زیست پزشکی، دوره سوم، شماره چهارم، 1395.
[31] مرادی فراهانی ح.، عسگری ج.، ذکری م.، «مروری بر منطق فازی نوع-2: از پیدایش تا کاربرد»، مجله محاسبات نرم، جلد ۲، شماره ۱، ص 22-43، 1392.
[32] قاسمی ر.، محمدی ح.، طاهر س.ع.، «کنترل فرکانس یک زیرشبکه جزیره‌ای با استفاده از کنترل هوشمند پاسخ‌گویی بار مبتنی بر منطق فازی و الگوریتم بهینه سازی ازدحام ذرات»، مجله محاسبات نرم، جلد 6، شماره 2، ص 18-31، 1396.