موقعیت ‌یابی چندگامه مبتنی بر الگوریتم ازدحام ذرات برای شبکه‌ ها‌ی حسگر بی‌سیم

نویسندگان

1 دانشگاه کاشان

2 دانشگاه آزاد اسلامی، واحد خمین

چکیده

یک شبکه حسگر از تعداد زیادی گره‌ حسگر تشکیل شده که اطلاعات محیط جغرافیایی بزرگی را که در آن پخش شده ‏اند جمع‌آوری می‌کنند. به‌دلیل اهمیت تعیین محل وقوع یک رخداد، موقعیت‌یابی یکی از موضوعات کلیدی و مهم در حوزه شبکه‌های حسگر بی‌سیم محسوب می‌شود. از سوی دیگر، استفاده از موقعیت‌یاب جهانی GPS برای پیدا کردن موقعیت حسگرها به‌دلیل برخی محدودیت‌های موجود در گره‏ های حسگر مانند قیمت و اندازه فیزیکی مناسب نیست. در برخی کاربردها، تعدادی گره راهنما که از موقعیت‌ خود اطلاع دارند به گره‏ های حسگر اطلاعاتی می‏ دهند تا بتوانند موقعیت خویش را تعیین کنند. به‌دلیل وجود خطا، دقت پایین روش‏ های فاصله‏ یابی و از همه مهم‌تر فاصله چندگامه گره ‏های حسگر از گره‏ های راهنما، ممکن است موقعیت به‌دست‌آمده دقت مناسبی نداشته باشد. در این مقاله، یک الگوریتم ازدحام ذرات توزیع‌شده برای تعیین موقعیت گره ‏های حسگر ارائه شده است. در الگوریتم پیشنهادی، از میانگین طول گام و تعداد گام فاصله بین گره حسگر تا گره‏ های راهنما برای تعیین موقعیت کمک گرفته شده است. نتایج شبیه‌سازی و همچنین مقایسه خطای موقعیت‌یابی در الگوریتم پیشنهادی و الگوریتم‌های رایج، حاکی از کارایی مناسب الگوریتم ارائه‌شده در فراهم کردن موقعیت دقیق مکانی است.

کلیدواژه‌ها


عنوان مقاله [English]

A multi-hop PSO based localization algorithm for wireless sensor networks

نویسندگان [English]

  • Saeed Doostali 1
  • Mohammad Khalily-Dermany 2
1
2
چکیده [English]

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate due to some limitations on sensor nodes such as price and physical size. In some localization approaches, sensor nodes specify their position with the help of anchor nodes, which have pre-configured positions. Due to error, low accuracy of distance detection method, and, most importantly, and the multi-hop distance of the sensor nodes from the anchors, the obtained position may not be accurate. In this paper, a distributed Particle Swarm Optimization (PSO) algorithm is proposed to estimate the position of the sensor nodes using anchors. In the proposed approach, the average hop length and the number of hops between a sensor node and the anchors are used to determine the estimated positions. The simulation results, as well as the comparison of the proposed algorithm to others, in terms of the average localization error, indicate that our approach leads to more accurate localization. 

کلیدواژه‌ها [English]

  • Multi-hop localization
  • Wireless sensor networks
  • Lateration
  • Particle Swarm Optimization
  • Average localization error
  1. [1] G. Han, H. Xu, T. Q. Duong, J. Jiang, and T. Hara, "Localization algorithms of wireless sensor networks: a survey," Telecommunication Systems, vol. 52, no. 4, pp. 2419-2436, 2013. [2] H. Karl and A. Willig, Protocols and architectures for wireless sensor networks. John Wiley & Sons, 2007. [3] L. Wang and Q. Xu, "GPS-free localization algorithm for wireless sensor networks," Sensors, vol. 10, no. 6, pp. 5899-5926, 2010. [4] L. Cui, C. Xu, G. Li, Z. Ming, Y. Feng, N. Lu, “A high accurate localization algorithm with DV-Hop and differential evolution for wireless sensor network”, Applied Soft Computing, Vol. 68, pp. 39-52, 2018. [5] M. Mehrabi, H. Taheri, P. Taghdiri, “An improved DV-Hop localization algorithm based on evolutionary algorithms”, Telecommun System, Vol. 64, pp. 1-9, 2017. [6] R. Harikrishnan, V. J. S. Kumar, P. S. Ponmalar, “Differential evolution approach for localization in wireless sensor networks”, IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, pp. 1-4, 2014. [7] R. Harikrishnan, V. J. S. Kumar, P. S. Ponmalar, “A Comparative Analysis of Intelligent Algorithms for Localization in Wireless Sensor Networks”, Wireless Pers. Commun., Vol. 87, No. 3, pp. 1057-1069, 2016. [8] B. M. Sahoo, T. Amgoth and H. M. Pandey, “Particle swarm optimization based energy efficient clustering and sink mobility in heterogeneous wireless sensor network”, Ad Hoc Networks, Vol. 106, pp. 102237, 2020. [9] Y. Zhang, “Coverage Optimization and Simulation of Wireless Sensor Networks Based on Particle Swarm Optimization”, International Journal of Wireless Information Networks, Vol. 27, No. 2, pp. 307-316, 2020. [10] A. Savvides, C.-C. Han, and M. B. Strivastava, "Dynamic fine-grained localization in ad-hoc networks of sensors," in Proceedings of the 7th annual international conference on Mobile computing and networking, 2001: ACM, pp. 166-179. [11] J. Lee, W. Chung, and E. Kim, "A new range-free localization method using quadratic programming," Computer Communications, vol. 34, no. 8, pp. 998-1010, 2011. [12] K. Iniewski, Optical, acoustic, magnetic, and mechanical sensor technologies. CRC Press, 2012. [13] A. Wessels, X. Wang, R. Laur, and W. Lang, "Dynamic indoor localization using multilateration with RSSI in wireless sensor networks for transport logistics," Procedia Engineering, vol. 5, pp. 220-223, 2010. [14] J. Huang, Y. Xue, and L. Yang, "An efficient closed-form solution for joint synchronization and localization using TOA," Future Generation Computer Systems, vol. 29, no. 3, pp. 776-781, 2013. [15] A. Nasipuri and K. Li, "A directionality based location discovery scheme for wireless sensor networks," in Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, 2002: ACM, pp. 105-111. [16] H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks. Wiley, ISBN 978-0-470-09510-2, pp. 1-497, 2005. [17] D. Niculescu and B. Nath, "DV based positioning in ad hoc networks," Telecommunication Systems, vol. 22, no. 1-4, pp. 267-280, 2003. [18] Z. Sun, R. Yu, and S. Mei, "A power-aware and range-free localization algorithm for sensor networks," in Communications, 2006. APCC'06. Asia-Pacific Conference on, 2006: IEEE, pp. 1-5. [19] W.-W. Ji and Z. Liu, "An improvement of DV-Hop algorithm in wireless sensor networks," in Wireless Communications, Networking and Mobile Computing, 2006. WiCOM 2006. International Conference on, 2006: IEEE, pp. 1-4. [20] H. Chen, K. Sezaki, P. Deng, and H. C. So, “An improved DV-Hop localization algorithm for wireless sensor networks,” in Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, pp. 1557–61, 2008. [21] H. Chen, K. Sezaki, P. Deng, and H. C. So, “An improved DV-Hop localization algorithm with reduced node location error for WSNs,” IEICE Tran. Fund .Electron. Commun. Comput. Sci., Vol. 91, No. 8, pp. 2232–36, 2008. [22] S. Hou, X. Zhou, and X. Liu, “A novel DV-Hop localization algorithm for asymmetry distributed WSNs,” in Proceedings of the 3rd IEEE Conference on Computer Science and Information Technology, Chengdu, China, pp. 243–8, 2010. [23] Y. Li, “Improved DV-Hop localization algorithm based on local estimating and dynamic correction in location for WSNs,” Int. J. Digit. Content Technol. Appl., Vol. 5, No. 8, pp. 196–202, 2011. [24] H. Safa, "A novel localization algorithm for large scale wireless sensor networks," Computer Communications, vol. 45, pp. 32-46, 2014. [25] R. Nagpal, H. Shrobe, and J. Bachrach, "Organizing a global coordinate system from local information on an ad hoc sensor network," in Information Processing in Sensor networks, 2003: Springer, pp. 333-348. [26] B. Peng, L. Lei, “An improved localization algorithm based on genetic algorithm in wireless sensor networks,” Cogn. Neurodynamics, Vol. 9, No. 2, pp. 249–256, 2015.