حل مسئله در مدار قرار دادن نیروگاه‌ها با استفاده از الگوریتم رقابت استعماری اصلاح‌شده

نویسندگان

دانشگاه کاشان

چکیده

در مدار قرار دادن نیروگاه‌ها یکی از مهم‌ترین مسائل در بهره‌برداری از سیستم‌های قدرت است که در آن قیود مختلفی وجود دارند که باید رعایت شوند. این مسئله، غیرخطی و گسترده می‌باشد؛ به همین دلیل استفاده از الگوریتم‌های هوشمند برای حل آن‌ بسیار مورد توجه قرار گرفته است. در این مقاله با بهره‌گیری از الگوریتم هوشمند رقابت استعماری اصلاح‌شده، که روش جدیدی است، حل مسئله در مدار قرار دادن ژنراتور‌ها و تخصیص تولید واحد‌های مختلف برای تأمین انرژی در طول برنامه یک‌روزه در سیستم استاندارد 10، 60 و 100 واحدی IEEE انجام گرفته است. نتایج به‌دست‌آمده نشان‌دهنده صرفه‌جویی اقتصادی بیشتر نسبت به سایر الگوریتم‌های هوشمند مانند الگوریتم ژنتیک (GA)، الگوریتم بهبودیافته ژنتیک (ICGA)، الگوریتم اجتماع پرندگان (PSO) و بهبودیافته‌های آن و الگوریتم جست‌وجوی پرنده فاخته (Cockoo Searching) است.

کلیدواژه‌ها


عنوان مقاله [English]

Solving the Unit Commitment Problem Using Modified Imperialistic Competition Algorithm

نویسندگان [English]

  • Seyed Abbas Taher
  • mehdi Heidarian
  • Ehsan Hamnashin
چکیده [English]

One of the most important problems for power system operation is unit commitment (UC), for which different constraints should be satisfied. UC is a nonlinear and large-scale problem; thus, using the evolutionary algorithms has been considered for solving the problem. In this paper, the solution of the UC problem was investigated using Modified Imperialistic Competition Algorithm (MICA).  Simulations were performed for a 10, 60 and 100-unit IEEE test system to produce the demand energy during a period of 24-hour. The obtained results were compared with those of some pervious algorithms such as GA, ICGA, PSO and their modified versions, and Cuckoo searching. The comparisons demonstrated the economic advantage of the presented method.

کلیدواژه‌ها [English]

  • Unit commitment
  • evolutionary algorithms
  • Modified imperialistic competition algorithm
  • Priority list
  1. [1] V. S. Pappala and I. Erlich, "A new approach for solving the unit commitment problem by adaptive particle swarm optimization," ed: IEEE, 2008, pp. 1-6. [2] T. O. Ting, M. V. C. Rao, and C. K. Loo, "A novel approach for unit commitment problem via an effective hybrid particle swarm optimization," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 21, no. 1, pp. 411-418, 02/01/ 2006, doi: 10.1109/TPWRS.2005.860907. [3] J. Yun-Won, P. Jong-Bae, J. Se-Hwan, and K. Y. Lee, "A New Quantum-Inspired Binary PSO for Thermal Unit Commitment Problems," ed, 2009, pp. 1-6. [4] R. Burns, "Optimization of priority lists for a unit commitment program," in Proc. IEEE Power Eng. Soc. Summer Meeting, 1975, 1975. [5] G. B. Sheble, "Solution of the unit commitment problem by the method of unit periods," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 5, no. 1, pp. 257-260, 02/01/ 1990, doi: 10.1109/59.49114. [6] W. L. Snyder, H. D. Powell, and J. C. Rayburn, "Dynamic programming approach to unit commitment," IEEE Transactions on Power Systems, vol. 2, no. 2, pp. 339-348, 1987. [7] Z. Ouyang and S. M. Shahidehpour, "An intelligent dynamic programming for unit commitment application," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 6, no. 3, pp. 1203-1209, 08/01/ 1991, doi: 10.1109/59.119267. [8] A. Bhadoria, S. Marwaha, and V. K. Kamboj, "An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm," Neural Computing and Applications, vol. 32, no. 7, pp. 2785-2814, 2020/04/01 2020, doi: 10.1007/s00521-019-04598-8. [9] F. Zhuang and F. D. Galiana, "Towards a more rigorous and practical unit commitment by Lagrangian relaxation," IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 763-773, 1988. [10] F. N. Lee, "A fuel-constrained unit commitment method," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 4, no. 3, pp. 1208-1218, 08/01/ 1989, doi: 10.1109/59.32619. [11] S. Virmani, E. C. Adrian, K. Imhof, and S. Mukherjee, "Implementation of a Lagrangian relaxation based unit commitment problem," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 4, no. 4, pp. 1373-1380, 11/01/ 1989, doi: 10.1109/59.41687. [12] G. B. Sheblé and T. T. Maifeld, "Unit commitment by genetic algorithm and expert system," (in English), Electric Power Systems Research, Article vol. 30, no. 2, pp. 115-121, 01 / 01 / 1994, doi: 10.1016/0378-7796(94)90006-X. [13] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, "A genetic algorithm solution to the unit commitment problem," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 11, no. 1, pp. 83-92, 02/01/ 1996, doi: 10.1109/59.485989. [14] T. Senjyu, H. Yamashiro, K. Shimabukuro, K. Uezato, and T. Funabashi, "Fast solution technique for large-scale unit commitment problem using genetic algorithm," IEE Proceedings -- Generation, Transmission & Distribution, Article vol. 150, no. 6, pp. 753-760, 2003, doi: 10.1049/ip-gtd:20030939. [15] G. Zwe-Lee, "Discrete particle swarm optimization algorithm for unit commitment," vol. 1, ed. Piscataway, NJ, USA, USA: IEEE, 2003, p. 418. [16] Y. Zhai, N. Mu, X. Liao, J. Le, and T. Huang, "Unit commitment problem using an efficient pso based algorithm," in 2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI), 2019: IEEE, pp. 320-324. [17] Zhai, X. Liao, N. Mu, and J. Le, "A two-layer algorithm based on PSO for solving unit commitment problem," Soft Computing, 2019/10/25 2019, doi: 10.1007/s00500-019-04445-x. [18] N. S. Sisworahardjo and A. A. El-Keib, "Unit commitment using the ant colony search algorithm," ed. Piscataway, NJ, USA, USA: IEEE, 2002, pp. 2-6. [19] A. TERKI and H. BOUBERTAKH, "Application of a Binary-Real Coded Cuckoo Search Algorithm for Solving Unit Commitment Problem," in 2019 International Conference on Advanced Electrical Engineering (ICAEE), 2019: IEEE, pp. 1-6. [20] S. H. Hosseini, A. Khodaei, and F. Aminifar, "A Novel Straightforward Unit Commitment Method for Large-Scale Power Systems," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 22, no. 4, pp. 2134-2143, 11/01/ 2007, doi: 10.1109/TPWRS.2007.907443. [21] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition," ed: IEEE, 2007, pp. 4661-4667. [22] A. Biabangard-Oskouyi, E. Atashpaz-Gargari, N. Soltani, and C. Lucas, "Application of imperialist competitive algorithm for materials property characterization from sharp indentation test," International Journal of Engineering Simulation, vol. 10, no. 1, pp. 11-12, 2009. [23] A. Khabbazi, "Imperialist competitive algorithm for minimum bit error rate beamforming," vol. 1, ed, 2009, pp. 125-133. [24] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, "A solution to the unit-commitment problem using integer-coded genetic algorithm," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 19, no. 2, pp. 1165-1172, 05/01/ 2004, doi: 10.1109/TPWRS.2003.821625. [25] M. Eslamian, S. H. Hosseinian, and B. Vahidi, "Bacterial Foraging-Based Solution to the Unit-Commitment Problem," IEEE Transactions on Power Systems, Power Systems, IEEE Transactions on, IEEE Trans. Power Syst., Periodical vol. 24, no. 3, pp. 1478-1488, 08/01/ 2009, doi: 10.1109/TPWRS.2009.2021216. [26] M. M. Hadji and B. Vahidi, "A solution to the unit commitment problem using imperialistic competition algorithm," IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 117-124, 2011.