[1] B. Pourasghar, H. Izadkhah, A. Isazadeh, and S. Lotfi, “A graph-based clustering algorithm for software systems modularization,” Inf. Softw. Technol., vol. 133, p. 106469, 2021, doi: 10.1016/j.infsof.2020.106469.
[2] H. Izadkhah and M. Tajgardan, “Information theoretic objective function for genetic software clustering,” Multidisciplinary Digit. Pub. Instit. Proc., vol. 46, no. 1, p. 18, 2019, doi: 10.3390/ecea-5-06681.
[3] M. Tajgardan and H. Izadkhah, “Critical Review of the Bunch: A Well-Known Tool for the Recovery and Maintenance of Software System Structures,” Critical Rev., vol. 6, no. 3, pp. 363-367, 2017, doi: 10.17148/IJARCCE.2017.6383.
[4] S. Gholamshahi and S.M.H. Hasheminejad, “A method for identifying software components based on Non-dominated Sorting Genetic Algorithm,” Soft Comput. J., vol. 7, no. 2, pp. 47-64, 2019, dor: 20.1001.1.23223707.1397.7.2.4.5 [In Persian].
[5] M. Nabiloo and N. Daneshpour, “A clustering algorithm for categorical data with combining measures,” Soft Comput. J., vol. 5, no. 1, pp. 14-25, 2017 [In Persain].
[6] A. Isazadeh, H. Izadkhah, and I. Elgedawy, Source Code Modularization Theory and Techniques, Springer International Publishing, 2017.
[7] S. Asta, Machine learning for improving heuristic optimisation, Doctoral dissertation, University of Nottingham, 2015.
[8] M.A.L. Silva, S.R. de Souza, M.J.F. Souza, and M.F. de Franca Filho, “Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis,” Appl. Soft Comput., vol. 71, pp. 433-459, 2018, doi: 10.1016/j.asoc.2018.06.050.
[9] R. Malek, “An agent-based hyper-heuristic approach to combinatorial optimization problems,” in IEEE Int. Conf. Intell. Comput. Intell. Syst., 2010, pp. 428-434.
[10] A. Hassan and N. Pillay, “Hybrid metaheuristics: An automated approach,” Expert Syst. Appl., vol. 130, pp. 132-144, 2019, doi: 10.1016/j.eswa.2019.04.027.
[11] D. Meignan, A. Koukam, and J.-C. Creput, “Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism,” J. Heuristics, vol. 16, no. 6, pp. 859-879, 2010, doi: 10.1007/s10732-009-9121-7.
[12] J. Huang, J. Liu, and X. Yao, “A multi-agent evolutionary algorithm for software module clustering problems,” Soft Comput., vol. 21, no. 12, pp. 3415-3428, 2017, doi: 10.1007/s00500-015-2018-5.
[13] A.C. Kumari and K. Srinivas, “Hyper-heuristic approach for multi-objective software module clustering,” J. Syst. Softw., vol. 117, pp. 384-401, 2016, doi: 10.1016/j.jss.2016.04.007.
[14] M. Tajgardan, H. Izadkhah, and S. Lotfi, “A Reinforcement Learning-based Iterated Local Search for Software Modularization,” in 8th Iranian Conf. Signal Process. Intell. Syst. (ICSPIS), 2022, pp. 1-6, doi: 10.1109/ICSPIS56952.2022.10043949.
[15] M. Tajgardan, H. Izadkhah, and S. Lotfi, “An Iterated Local Search Strengthened by a Q-learning-based Hyper-heuristic for Software Modularization,” Soft Comput. J., 2023, 10.22052/SCJ.2023.252654.1135.
[16] M. Saeed, O. Maqbool, H.A. Babri, S.Z. Hassan, and S.M. Sarwar, “Software clustering techniques and the use of combined algorithm,” in 7th European Conf. Soft. Maintenan. Reeng., 2003, pp. 301-306, doi: 10.1109/CSMR.2003.1192438.
[17] O. Maqbool and H. Babri, “Hierarchical clustering for software architecture recovery,” IEEE Trans. Softw. Eng. vol. 33, no. 11, pp. 759-780, 2007, doi: 10.1109/TSE.2007.70732.
[18] R. Naseem, O. Maqbool, and S. Muhammad, “Cooperative clustering for software modularization,” J. Syst. Softw., vol. 86, no. 8, pp. 2045-2062, 2013, doi: 10.1016/j.jss.2013.03.080.
[19] B.S. Mitchell, A heuristic search approach to solving the software clustering problem, Ph.D. Thesis, Drexel University, 2002.
[20] S. Parsa and O. Bushehrian, “A New Encoding Scheme and a Framework to Investigate Genetic Clustering Algorithms,” J. Res. Pract. Inf. Technol., vol. 37, no. 1, pp. 127-143, 2005.
[21] M. Harman and X. Yao, “Software module clustering as a multi-objective search problem,” IEEE Trans. Softw. Eng., vol. 37, no. 2, pp. 264-282, 2010, doi: 10.1109/TSE.2010.26.
[22] M. Tajgardan and H. Izadkhah, “Software Systems Clustering Using Estimation of Distribution Approach,” J. Appl. Comput. Sci. Methods., vol. 8, no. 2, pp. 99-113, 2016, dx.doi: 10.1515/jacsm-2016-0007.
[23] J. Huang and J. Liu, “A similarity-based modularization quality measure for software module clustering problems,” Inf. Sci., vol. 342, pp. 96-110, 2016, doi: 10.1016/j.ins.2016.01.030.
[24] B.S. Mitchell and S. Mancoridis, “On the automatic modularization of software systems using the bunch tool,” IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193-208, 2006, doi: 10.1109/TSE.2006.31.
[25] N. Sadat Jalali, H. Izadkhah, and S. Lotfi, “Multi-objective search-based software modularization: structural and non-structural features,” Soft Comput., vol. 23, no. 21, pp. 11141-11165, 2019, doi: 10.1007/s00500-018-3666-z.
[26] M. Kargar, A. Isazadeh, and H. Izadkhah, “Semantic-based software clustering using hill climbing,” in Int. Symp. Comput. Sci. Soft. Eng. Conf. (CSSE), 2017, pp. 55-60, doi: 10.1109/CSICSSE.2017.8320117.
[27] B. Arasteh, A. Seyyedabbasi, J. Rasheed, and A. Abu-Mahfouz, “Program Source-Code Re-Modularization Using a Discretized and Modified Sand Cat Swarm Optimization Algorithm,” Symmetry, vol. 15, no. 2, p. 401, 2023, doi: 10.3390/sym15020401.
[28] N. Teymourian, H. Izadkhah, and A. Isazadeh, “A fast clustering algorithm for modularization of large-scale software systems,” IEEE Trans. Softw. Eng., vol. 48, no. 4, pp. 1451-1462, 2020, doi: 10.1109/TSE.2020.3022212.
[29] V. Tzerpos and R.C. Holt, “Accd: an algorithm for comprehension-driven clustering,” in Proc. 7th Work. Conf. Rev. Eng., 2000, pp. 258-267, doi: 10.1109/WCRE.2000.891477.
[30] B. Zarei, M.R. Meybodi, and B. Masoumi, “Chaotic memetic algorithm and its application for detecting community structure in complex networks,” Chaos: Interdisciplinary J. Nonlinear Sci., vol. 30, no. 1, p. 13125, 2020, doi: 10.1063/1.5120094.
[31] S.S. Choong, L.P. Wong, and C.P. Lim, “Automatic design of hyper-heuristic based on reinforcement learning,” Inf. Sci., vol. 436, pp. 89-107, 2018, doi: 10.1016/j.ins.2018.01.005.
[32] H. Izadkhah, I. Elgedawy, and A. Isazadeh, “E-CDGM: An Evolutionary Call-Dependency Graph Modularization Approach for Software Systems,” Cybern. Inf. Technol., vol. 16, no. 3, 2016, dx.doi: 10.1515/cait-2016-0035.
[33] K.A. Mahdavi, Clustering genetic algorithm for software modularisation with a multiple hill climbing approach, Ph.D. Thesis, Brunel University, 2005.