[1] K.M. Alrajeh and T.A. Alzohairy, “Date fruits classification using MLP and RBF neural networks,” Int. J. Comput. Appl., vol. 41, no. 10, 2012, doi: 10.1.1.259.4351.
[2] H. Faridi and M. Aboonajmi, “Application of machine vision in agricultural products,” in Proc. 4th Iran. Int. NDT Conf., 2017, pp. 26-27.
[3] Y. Todorov, I. Nacheva, P. Metodieva, M. Doneva, and T. Tsvetkov, “Soft computing applications in food technology,” Bulgarian J. Agricultural Sci., vol. 19, no. 3, pp. 503-507, 2013.
[4] R. Mahendran, G.C. Jayashree, and K. Alagusundaram, “Application of computer vision technique on sorting and grading of fruits and vegetables,” J. Food Process. Technol., vol. 10, 2012, doi: 10.4172/2157-7110.S1-001.
[5] M. Ghorbani, M. Aboonajmi, and K. Asefpour Vakilian, “The machine vision technology in precision agriculture: A comprehensive review on principles and applications,” Soft Comput. J., vol. 9, no. 1, pp. 92-113, 2020, doi: 10.22052/scj.2021.111453 [In Persian]
[6] A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using computer vision: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 3, pp. 243-257, 2018, doi: 10.1016/j.jksuci.2018.06.002.
[7] J. Gill, P.S. Sandhu, and T. Singh, “A review of automatic fruit classification using soft computing techniques,” in Proc. Int. Conf. Comput. Syst. Electron. Eng., 2014, pp. 91-98.
[8] B. Zhang et al., “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int., vol. 62, pp. 326-343, 2014, doi: 10.1016/j.foodres.2014.03.012.
[9] S.H. Ashtiani, A. Rohani, and M.H. Aghkhani, “Soft computing-based method for estimation of almond kernel mass from its shell features,” Scientia Horticulturae, vol. 262, p. 109071, 2020, doi: 10.1016/j.scienta.2019.109071.
[10] C. Coppola et al., “Investigation of the impact from IL-2, IL-7, and IL-15 on the growth and signaling of activated CD4+ T cells,” Int. J. Mol. Sci., vol. 21, no. 21, p. 7814, 2020, doi: 10.3390/ijms21217814.
[11] C. Cimpoiu, V.M. Cristea, A. Sandr Hosu, and L. Seserman, “Antioxidant activity prediction and classification of some teas using artificial neural networks,” Food Chem., vol. 127, pp. 1323-1328, 2011, doi: 10.1016/j.foodchem.2011.01.091.
[12] P. Rai, G.C. Majumdar, S. DasGupta, and S. De, “Prediction of the viscosity of clarified fruit juice using artificial neural network: a combined effect of concentration and temperature,” J. Food Eng., vol. 68, pp. 527-533, 2005, doi: 10.1016/j.jfoodeng.2004.07.003.
[13] S.Y. Tang, J.S. Lee, S.P. Loh, and H.J. Tham, “Application of artificial neural network to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 206, p. 012036, 2017.
[14] A.M. Torkashvand, A. Ahmadi, and N.L. Nikravesh, “Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR),” J. Integr. Agriculture, vol. 16, no. 7, pp. 1634-1644, 2017, doi: 10.1016/S2095-3119(16)61546-0.
[15] M. Mohammadpour, B. Minaei, H. Parvin, and K. Rahimizadeh, “Improved Genetic Algorithm Based on Critical Self-Organization and Gaussian Memory for Solving Dynamic Optimization Problems,” Soft Comput. J., vol. 9, no. 1, pp. 56-91, 2020, doi: 10.22052/scj.2021.111452 [In Persian].
[16] S.K. Vidyarthi, R. Tiwari, and S.K. Singh, “Size mass prediction of almond kernels using machine learning image processing,” bioRxiv, 2020, doi: 10.1101/736348.
[17] S. Joseph and I. Thanakumar, “Survey of data mining algorithms for intelligent computing,” J. Trends Comput. Sci. Smart Technol. (TCSST), vol. 1, no. 1, pp. 14-24, 2019, doi: 10.36548/jtcsst.2019.1.002.
[18] D.J.S. Raj and J.V. Ananthi, “Recurrent neural networks and nonlinear prediction in support vector machines,” J. Soft Comput. Paradigm (JSCP), vol. 1, no. 1, pp. 33-40, 2019, doi: 10.36548/jscp.2019.1.004.
[19] R.R. Yager, L.A. Zadeh, B. Kosko, and S. Grossberg, Fuzzy Sets, Neural Networks, and Soft Computing. New York, NY, USA: Van Nostrand Reinhold, 1994.
[20] A. Saxena et al., “A two-phase approach for semi-supervised feature selection,” Algorithms, vol. 13, no. 9, p. 215, 2020, doi: 10.3390/a13090215.
[21] S.L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol. 2, pp. 267-278, 1994, doi: 10.3233/IFS-1994-2306.
[22] H. Yu, J. Wang, and Y. Xu, “Identification of adulterated milk using electronic nose,” Sens. Mater., vol. 19, pp. 275-285, 2007.
[23] V.H. Pham and B.R. Lee, “An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm,” Vietnam J. Comput. Sci., vol. 2, no. 1, pp. 25-33, 2015.
[24] M.M. AlyanNezhadi, M. Hosseini, H. Qazanfari, and A. Kamandi, “Content-based image retrieval using support vector machine and texture difference histogram features,” Soft Comput. J., vol. 11, no. 1, pp. 10-21, 2022, doi: 10.22052/scj.2022.246175.1053 [In Persian].
[25] N. Karimi, R.R. Kondrood, and T. Alizadeh, “An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms,” Measurement, vol. 107, pp. 68-76, 2017, doi: 10.1016/j.measurement.2017.05.009.
[26] L. Ayalew and H. Yamagishi, “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan,” Geomorphology, vol. 65, no. 1, pp. 15-31, 2005, doi: 10.1016/j.geomorph.2004.06.010.
[27] K.G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Sensors, vol. 18, no. 8, p. 2674, 2018, doi: 10.3390/s18082674.
[28] L.A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83-93, 1988.
[29] K. Mittal, A. Jain, K.S. Vaisla, O. Castillo, and J. Kacprzyk, “A comprehensive review on type 2 fuzzy logic applications: Past, present and future,” Eng. Appl. Artif. Intell., vol. 95, p. 103916, 2020, doi: 10.1016/j.engappai.2020.103916.
[30] A. Kumar and A. Sharma, “Systematic literature review of fuzzy logic based text summarization,” Iran. J. Fuzzy Syst., vol. 16, no. 5, pp. 45-59, 2019, doi: 10.22111/ijfs.2019.4906.
[31] A. Adelkhani, S. Minai, B. Beheshti, and H. Javadi Kia, “Taste determination of Thompson orange using image processing based on ANFIS and ANN-GA methods,” J. Food Sci. Technol. (Iran), vol. 13, no. 56, pp. 45-55, 2016 [In Persian].
[32] S. M. Nassiri, A. Tahavoor, and A. Jafari, “Fuzzy logic classification of mature tomatoes based on physical properties fusion,” Inf. Process. Agric., 2021, doi: 10.1016/j.inpa.2021.09.001.
[33] A.N. Lorestani, M. Omid, S.A. Tabatabaeefar, A.M. Borghaee, and S. Bagheri Shoureki, “Design and evaluation of an intelligent system for grading Golden Delicious apples with fuzzy logic,” Iran. J. Agric. Sci., vol. 38, no. 1, pp. 1-10, 2007 [In Persian].
[34] M. Shahabi Ghavidelou, S. Rafiee, S.S. Mohtasebi, and S. Hosseinpour, “Application of artificial intelligence and adaptive neuro-fuzzy inference system in determining the moisture content of green tea leaves based on color parameters,” Iran. J. Biosyst. Eng., vol. 44, no. 2, pp. 125-133, 2013, doi: 10.22059/ijbse.2014.50120 [In Persian].
[35] V.G. Narendra, “An intelligent computer vision system for vegetables and fruits quality inspection using soft computing techniques,” Agric. Eng. Int.: CIGR J., vol. 21, no. 3, pp. 171-178, 2019.
[36] D.F. Specht, “A general regression neural network,” IEEE Trans. Neural Netw., vol. 2, no. 6, pp. 568-576, 1991.
[37] A.A.M. Al-Saffar, H. Tao, and M.A. Talab, “Review of deep convolution neural network in image classification,” in Proc. Int. Conf. Radar Antenna Microwave Electron. Telecommun. (ICRAMET), 2017, pp. 26-31, doi: 10.1109/ICRAMET.2017.8253139.
[38] Z. Fathizadeh, M. Aboonajmi, and S.R. Hassan-Beygi, “Classification of apples based on the shelf life using ANN and data fusion,” Food Anal. Methods, pp. 1-13, 2020.
[39] S.J. Sajjadi, “Application of discrete wavelet transform of impact sound and MLP artificial neural network in grading jujube fruit,” in Proc. 8th Nat. Congr. Agric. Mach. Eng. Mechaniz., Mashhad, Iran, 2013 [In Persian].
[40] C. Chudasama, S.M. Shah, and M. Panchal, “Comparison of parents selection methods of genetic algorithm for TSP,” in Proc. Int. Conf. Comput. Commun. Netw., 2011, pp. 85-87.
[41] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65-85, 1994.
[42] O.A. Jadan, L. Rajamani, and C.R. Rao, “Improved selection operator for GA,” J. Theor. Appl. Inf. Technol., vol. 4, no. 4, pp. 269-277, 2008.
[43] R. Thendral and A. Suhasini, “Automated skin defect identification system for orange fruit grading based on genetic algorithm,” Curr. Sci., vol. 112, no. 8, pp. 1704-1711, 2017.
[44] M. Aboonajmi, A. Saberi, T. Abbasian Najafabadi, and N. Kondo, “Quality assessment of poultry egg based on visible-near infrared spectroscopy and radial basis function networks,” Int. J. Food Prop., vol. 19, no. 5, pp. 1163-1172, 2016, doi: 10.1080/10942912.2015.1075215.
[45] W. Jia, L. Snetkov, and S. Aok, “An effective model based on Haar wavelet entropy and genetic algorithm for fruit identification,” in AIP Conf. Proc., 2018, p. 040013, doi: 10.1063/1.5033677.
[46] D.D. Silalahi, C.E. Reano, F.P. Lansigan, R.G. Panopio, and N.C. Bantayan, “Using genetic algorithm neural network on near infrared spectral data for ripeness grading of oil palm (Elaeis guineensis Jacq.) fresh fruit,” Inf. Process. Agric., vol. 3, no. 4, pp. 252-261, 2016, doi: 10.1016/j.inpa.2016.10.001.
[47] J.F.I. Nturambirwe, H.H. Nieuwoudt, W.J. Perold, and U.L. Opara, “Non-destructive measurement of internal quality of apple fruit by a contactless NIR spectrometer with genetic algorithm model optimization,” Sci. Afr., vol. 3, p. e00051, 2019, doi: 10.1016/j.sciaf.2019.e00051.
[48] M.S. Razavi, A. Golmohammadi, R. Sedghi, and A. Asghari, “Prediction of bruise volume propagation of pear during the storage using soft computing methods,” Food Sci. Nutr., vol. 8, no. 2, pp. 884-893, 2020, doi: 10.1002/fsn3.1365.
[49] S. Taghadomi-Saberi, S. Mas Garcia, A. Allah Masoumi, M. Sadeghi, and S. Marco, “Classification of bitter orange essential oils according to fruit ripening stage by untargeted chemical profiling and machine learning,” Sensors, vol. 18, no. 6, p. 1922, 2018, doi: 10.3390/s18061922.
[50] T. Van Looverbosch et al., “Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning,” Food Control, vol. 113, p. 107170, 2020, doi: 10.1016/j.foodcont.2020.107170.
[51] R.W.N. Syazwani, H.M. Asraf, M.A.M.S. Amin, and K.A.N. Dalila, “Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning,” Alexandria Eng. J., vol. 61, no. 2, pp. 1265-1276, 2022, doi: 10.1016/j.aej.2021.06.053.
[52] S.H. Payman, A. Bakhshipour Ziaratgahi, and A.A. Jafari, “Exploring the possibility of using digital image processing technique to detect diseases of rice leaf,” J. Agric. Mach., vol. 6, no. 1, pp. 69-79, 2016, doi: 10.22067/jam.v6i1.32031 [In Persian].
[53] S.F. Syed-Ab-Rahman, M.H. Hesamian, and M. Prasad, “Citrus disease detection and classification using end-to-end anchor-based deep learning model,” Appl. Intell., vol. 52, pp. 927-938, 2022.
[54] B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of apple leaf diseases based on deep convolutional neural networks,” Symmetry, vol. 10, no. 1, p. 11, 2018, doi: 10.3390/sym10010011.
[55] A. Cruz et al., “Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence,” Comput. Electron. Agric., vol. 157, pp. 63-76, 2019, doi: 10.1016/j.compag.2018.12.028.
[56] V. Borimnejad and A. Eftekhari, “Application of Fuzzy Logic in Raisins Rating. Agricultural Economics Research,” Agric. Econ. Res., vol. 3, no. 3, pp. 173-186, 2011, dor: 20.1001.1.20086407.1390.3.11.10.9 [In Persian].
[57] Z. Chuanlei, Z. Shanwen, Y. Jucheng, S. Yancui, and C. Jia, “Apple leaf disease identification using genetic algorithm and correlation based feature selection method,” Int. J. Agric. Biol. Eng., vol. 10, no. 2, pp. 74-83, 2017, doi: 10.3965/j.ijabe.20171002.2166.
[58] F. Salehi, A. Ardabili, A. Nemati, and R. Latifi, “Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method,” Iran. J. Food Sci. Technol., vol. 14, no. 69, pp. 105-114, 2017 [In Persian].
[59] F. Salehi, Z. Abbasi Shahkouh, and M. Godarzi, “Modeling osmotic drying of apricot using genetic algorithm-artificial neural network,” J. Innov. Food Sci. Technol., vol. 7, no. 1, pp. 65-76, 2013 [In Persian].
[60] G. Wang, Y. Sun, and J. Wang, “Automatic image-based plant disease severity estimation using deep learning,” Comput. Intell. Neurosci., p. 2917536, 2017, doi: 10.1155/2017/2917536.