پیش‌بینی پیوند در شبکه‌های علمی با استفاده از یادگیری ماشین و گراف‌های وزن‌دار

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان، کاشان، ایران

چکیده

چکیده: با سرعت گرفتن رشد علم و انتشار مقالات و افزایش زمینه‌های علمی، یافتن همکار پژوهشی مناسب، یافتن منابع تحقیق و زمینه تحقیق برای محققان و نهادهای مربوطه، روز به روز سخت‌تر می‌شود. با انتخاب درست این موارد، می‌توان بیشترین بازدهی را از هزینه و زمان صرف شده برای پژوهش کسب کرد. برای حل این مسئله می‌توان با ایجاد شبکه‌ای شامل مقالات، دانشمندان و سایر موجودیت‌های علمی و ارتباطات بین آن‌ها، یک شبکه‌ علمی ایجاد کرد و با استفاده از پیش‌بینی پیوند ارتباطاتی که در آینده شکل می‌گیرد را پیش‌بینی کرد. در این مقاله چارچوبی مبتنی بر یادگیری ماشین برای پیش‌بینی پیوند در شبکه‌های علمی ارائه شده است. در این چارچوب با وزن‌دهی شبکه بر اساس زمان و محتوا، محاسبه‌ ویژگی‌های ساختاری و متنی جاسازی شده و انتخاب و استخراج ویژگی انجام می‌شود. در نهایت نمونه‌گیری منفی با استفاده از خوشه‌بندی تولید می‌شود تا یک مدل یادگیری ماشین برای پیش‌بینی پیوند آموزش داده ‌شود. هر یک از مراحل این چارچوب به صورت جدا و همه با هم آزمایش شدند و نتایج نشان داد روش وزن‌دهی پیشنهاد شده برای شبکه ارجاعات و همکاری نویسندگان باعث افزایش دقت معیارهای شباهت وزن‌دار و در نتیجه افزایش دقت کل الگوریتم می‌شود. همچنین نمونه‌گیری منفی با استفاده از خوشه‌بندی باعث بهتر آموزش داده شدن الگوریتم یادگیری ماشین می‌شود. ویژگی‌های متنی داده‌های علمی مانند عنوان و چکیده مقالات نیز نقش مؤثری در پیش‌بینی پیوندهای آینده دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Link prediction in scientific networks using machine learning and weighted graphs

نویسندگان [English]

  • Seyed Mehdi Vahidipour
  • Alireza Mohamadi
Electrical and Computer Engineering Department, University of Kashan, Kashan, Iran
چکیده [English]

With the acceleration of the development of science and the publication of articles and the increase of scientific fields, finding suitable research partners, finding research sources and research fields for researchers and relevant institutions is becoming more and more difficult. By choosing these things correctly, you can get the most efficiency from the cost and time spent on research. To solve this problem, a scientific network can be created by creating a network including articles, scientists, and other scientific entities and the connections between them, and predicting the connections that will be formed in the future using link prediction. In this paper, a framework based on machine learning is presented for link prediction in scientific networks. In this framework, by weighting the network based on time and content, calculating embedded structural and textual features, feature selection and extraction, and finally negative sampling using clustering, a machine learning model is trained for link prediction. Each of the steps of this framework was tested separately and all together, and the results showed that the proposed weighting method for the network of references and authors' collaboration increases the accuracy of the weighted similarity criteria and, as a result, increases the accuracy of the entire algorithm. Also, negative sampling using clustering makes the machine learning algorithm better trained. The textual features of scientific data such as the title and abstract of articles also play an effective role in predicting future links.

کلیدواژه‌ها [English]

  • Link Prediction
  • Citation Networks
  • Author Collaboration Networks
  • Machine Learning
  • Weighted Graph