[1] I. Kurniawan, M.F. Akbar, D.F. Saepudin, M.S. Azis, and M. Tabrani, “Improving the effectiveness of classification using the data level approach and feature selection techniques in online shoppers purchasing intention prediction,” J. Physics Conf. Series, vol. 1641, no. 012083, pp. 1-8, 2020, doi: 10.1088/1742-6596/1641/1/012083.
[2] I.O. Adam, M.D. Alhassan, and Y. Afriyie, “What drives global B2C Ecommerce? An analysis of the effect of ICT access, human resource development and regulatory environment,” Technol. Anal. Strateg. Manag., vol. 32, no. 7, pp. 835-850, 2020, doi: 10.1080/09537325.2020.1714579.
[3] D. Blanchard, Supply chain management best practices, Third Edition, Wiley, 2021.
[4] J. Wolny, and N. Charoensuksai, “Mapping customer journeys in multichannel decision-making,” J. Direct Data Digit. Mark. Pract., vol. 15, no. 4, pp. 317-326, 2014, doi: 10.1057/dddmp.2014.24.
[5] N. Gudigantala, P. Bicen, and M. Eom, “An examination of antecedents of conversion rates of e-commerce retailers,” Manag. Res. Rev., vol. 39, no. 1, pp. 82-114, 2016, doi: 10.1108/MRR-05-2014-0112.
[6] G. Suchacka, M. Skolimowska-Kulig, and A. Potempa, “A k-nearest neighbors method for classifying user sessions in e-commerce scenario,” J. Telecommun. Inf. Technol., pp. 64-69, 2015.
[7] C.O. Sakar, S.O. Polat, M. Katircioglu, and Y. Kastro, “Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks,” Neural Comput. Appl., vol. 31, pp. 6893-6908, 2019, doi: 10.1007/s00521-018-3523-0.
[8] UCI Machine Learning Repository, Accessed August 2023, Available: https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset
[9] K. Baati, and M. Mohsil, “Real-time prediction of online shoppers’ purchasing intention using random forest,” in IFIP Int. Conf. Artif. Intell. Appl. Innov. 16th IFIP WG 12.5 Int. Conf. (AIAI), Neos Marmaras, Greece, 2020, Part I 16, pp. 43-51, doi: 10.1007/978-3-030-49161-1_4.
[10] M.R. Kabir, F.B. Ashraf, and R. Ajwad, “Analysis of different predicting model for online shoppers’ purchase intention from empirical data,” in 22nd Int. Conf. Comput. Inf. Technol. (ICCIT), 2019, pp. 1-6, doi: 10.1109/ICCIT48885.2019.9038521.
[11] R. Obiedat, “A comparative study of different data mining algorithms with different oversampling techniques in predicting online shopper behavior,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 3575-3583, 2020, doi: 10.30534/ijatcse/2020/164932020.
[12] Z. Sharifi Mehrjard, H. Momeni, and H. Adabi Ardekani, “A review of machine learning algorithms to diagnose autism using EEG signal,” Soft Comput. J., vol. 13, no. 1, pp. 2-19, 2024, doi: 10.22052/SCJ.2023.248522.1110 [In Persian].
[13] M. Mousavi, S. Hosseini, and M.R. Omidi, “Improved Deep Neural Network Algorithm for Covid-19 Detection in Internet of Things,” Soft Comput. J., vol. 12, no. 2, pp. 54-71, 2024, doi: 10.22052/SCJ.2023.248686.1117 [In Persian].
[14] E. Saberi, E. Radmand, J. Pirgazi, and A. Kermani, “Buying and selling strategy in the Iranian stock market using machine learning models along with feature selection using the Cuckoo Search algorithm,” Soft Comput. J., vol. 12, no. 2, pp: 130-145, 2024, doi: 10.22052/SCJ.2023.252793.1144 [In Persian].
[15] E.H.A. Rady and A.S. Anwar, “Prediction of kidney disease stages using data mining algorithms,” Inf. Med. Unlocked, vol. 15, pp: 1-7, 2019, doi: 10.1016/j.imu.2019.100178.
[16] S.A. Alasadi and W.S. Bhaya, “Review of data preprocessing techniques in data mining,” J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102-4107, 2017, doi: 10.36478/jeasci.2017.4102.4107.
[17] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, Third Edition, Morgan Kaufmann, 2012, doi: 10.1016/C2009-0-61819-5.
[18] A. Zimek and P. Filzmoser, “There and back again: Outlier detection between statistical reasoning and data mining algorithms,” Wiley Interdisciplinary Reviews: Data Mining Knowl. Discov., vol. 8, no. 6, pp. 1-37 ,2018, doi: 10.1002/widm.1280.
[19] M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander, “LOF: identifying density-based local outliers,” in Proc. 2000 ACM SIGMOD Int. Conf. Manag. Data, 2000, pp. 93-104, doi: 10.1145/342009.335388.
[20] C.F. Tsai, W.C. Lin, Y.H. Hu, and G.T. Yao, “Under-sampling class imbalanced datasets by combining clustering analysis and instance selection,” Inf. Sci., vol. 477, pp. 47-54, 2019, doi: 10.1016/j.ins.2018.10.029.
[21] H. Han, W.Y. Wang, and B.H. Mao, “Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning,” in Int. Conf. Intell. Comput., 2005, pp. 878-887, doi: 10.1007/11538059_91.
[22] P. Yildirim, “Filter based feature selection methods for prediction of risks in hepatitis disease,” Int. J. Mach. Learn. Comput., vol. 5, no. 4, pp. 258-263, 2015, doi: 10.7763/IJMLC.2015.V5.517.