توسعه الگوریتم تکامل شوراهای شهر برای حل مسائل بهینه‌سازی چندهدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فناوری اطلاعات و مهندسی کامپیوتر، دانشگاه شهید مدنی آ‌ذربایجان، تبریز، ایران.

چکیده

پیشرفت فناوری و ظهور مسائل بهینه‌سازی چندهدفه در شاخه‌های علوم مختلف باعث تحقیق و ارائه الگوریتم‌های فراابتکاری جدید برای حل چنین مسائلی شده‌اند. اگرچه این الگوریتم‌ها تا حدودی توانسته‌اند تقریب به نسبت خوبی از جبهه بهینه پرِتو را پیدا کنند ولی هنوز بهینه‌سازی به‌طور کامل انجام نشده است. در این مقاله، برای افزایش میزان بهینگی جبهه پرِتو تولید شده، نسخه چندهدفه‌ای از الگوریتم تکامل شوراهای شهر (CCE) با نام الگوریتم تکامل شوراهای شهر چندهدفه (MOCCE) ارائه می‌شود. در الگوریتم ارائه شده، یک آرشیو با اندازه ثابت برای ذخیره و بازیابی راه‌حل‌های بهینه پرِتو در نظر گرفته می‌شود. از این آرشیو برای تعریف ساختار هرم‌گونه شوراهای شهرها و شبیه‌سازی تکامل آن در فضاهای جستجوی چندهدفه استفاده می‌شود. کارایی الگوریتم MOCCE روی 18 تابع آزمون چندهدفه شناخته شده موسوم به UF و IMOP مورد ارزیابی قرار گرفته و با نتایج الگوریتم‌های بهینه‌سازی شیر مورچه چندهدفه (MOALO)، کپک مخاطی چندهدفه (MOSMA) و مرغ مگس‌خوار مصنوعی چندهدفه (MOAHA) مقایسه شده‌اند. مطابق با نتایج آزمون میانگین رتبه فریدمن، در همه توابع آزمون UF، الگوریتم MOCCE اولین رتبه را در بین الگوریتم‌های مقایسه شده از لحاظ معیارهای فاصله نسلی (GD)، فاصله نسلی معکوس (IGD) و بیشینه گستردگی (MS) کسب می‌کند. همچنین، این الگوریتم اولین رتبه را در همه توابع آزمون IMOP از لحاظ معیار GD و دومین رتبه را از لحاظ معیارهای IGD و MS به خود اختصاص می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of City Councils Evolution Algorithm for Multi-objective Optimization Problems

نویسندگان [English]

  • Mahdieh Ghaffar Alishahi
  • Einollah Pira
  • Alireza Rouhi
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
چکیده [English]

The advancement of technology and the emergence of multi-objective optimization problems in various scientific domains have led to the research and presentation of new meta-heuristic algorithms to solve such problems. Although these algorithms have been able to find a relatively good approximation of the optimal Pareto front, but a complete optimization has not been carried out yet. In this paper, to increase the optimality of the generated Pareto front, we present a multi-objective version of the city council evolution algorithm (CCE) called the multi-objective city council evolution algorithm (MOCCE). In the presented algorithm, an archive with a fixed size is considered for storing and retrieving optimal Pareto solutions. This archive is used to define the hierarchical structure of city councils and to simulate its evolution in multi-objective search spaces. The efficiency of MOCCE algorithm has been evaluated on 18 well-known multi-objective test functions known as UF and IMOP and with the results of multi-objective ant lion optimization (MOALO), multi-objective orthogonal mould algorithm (MOSMA) and multi-objective artificial hummingbird optimization algorithms (MOAHA) have been compared. According to the results of the Friedman's mean rank test, in all UF test functions, MOCCE ranks first among all compared algorithms in terms of generation distance (GD), inverse generation distance (IGD) and maximum spread (MS) criteria. Also, this algorithm takes the first rank in all IMOP test functions in terms of GD criterion and the second rank in terms of IGD and MS criteria

کلیدواژه‌ها [English]

  • Meta-heuristic algorithms
  • Optimization
  • Multi-objective
  • Evolution of city council
  • Pareto front
[1] H. Shafiei, V. Rafe, and M. Amiri, “Optimization of vehicle routing based on the combination of ant colony and particle swarm algorithms with the heuristic function of the cosine of angles,” Soft Comput. J., vol. 12, no. 2, pp. 146-164, 2024, doi: 10.22052/scj.2023.248702.1118 [In Persian].
[2] S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, and S.M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Soft., vol. 114, pp. 163-191, 2017, doi: 10.1016/j.advengsoft.2017.07.002.
[3] U. Yuzgec and M. Kusoglu, “Multi-objective harris hawks optimizer for multiobjective optimization problems,” BSEU J. Eng. Res. Technol., vol. 1, no. 1, pp. 31-41, 2020.
[4] B. Cao, M. Li, X. Liu, J. Zhao, W. Cao, and Z. Lv, “Many-objective deployment optimization for a drone-assisted camera network,” IEEE Trans. Network Sci. Eng., vol. 8, no. 4, pp. 2756-2764, 2021, doi: 10.1109/TNSE.2021.3057915.
[5] J. Branke, T. Kaubler, and H. Schmeck, “Guidance in evolutionary multi-objective optimization,” Adv. Eng. Soft., vol. 32, no. 6, pp. 499-507, 2001, doi: 10.1016/S0965-9978(00)00110-1.
[6] M. Zamzame, S. Sedighian Kashi, and A. Nikanjam, “Energy-aware evolutionary multi-objective refactoring for bad code smells correction of Android applications,” Soft Comput. J., vol. 12, no. 2, pp. 72-89, 2024, doi: 10.22052/scj.2023.246479.1074 [In Persian].
[7] C. Lin, F. Gao, and Y. Bai, “An intelligent sampling approach for metamodel-based multi-objective optimization with guidance of the adaptive weighted-sum method,” Struct. Multidiscip. Optim., vol. 57, pp. 1047-1060, 2018, doi: 10.1007/s00158-017-1793-2.
[8] J. Behnamian, M. Zandieh, and S. Fatemi Ghomi, “Bi-objective parallel machines scheduling with sequence-dependent setup times using hybrid metaheuristics and weighted min–max technique,” Soft Comput., vol. 15, pp. 1313-1331, 2011, doi: 10.1007/s00500-010-0673-0.
[9] R. W. Hanks, B.J. Lunday, and J.D. Weir, “Robust goal programming for multi-objective optimization of data-driven problems: A use case for the United States transportation command’s liner rate setting problem,” Omega, vol. 90, p. 101983, 2020, doi: 10.1016/j.omega.2018.10.013.
[10] L. Lai, L. Fiaschi, M. Cococcioni, and K. Deb, “Solving mixed pareto-lexicographic multiobjective optimization problems: the case of priority levels,” IEEE Trans. Evol. Comput., vol. 25, no. 5, pp. 971-985, 2021, doi: 10.1109/TEVC.2021.3068816.
[11] J. Zheng, Z. Zhang, J. Zou, S. Yang, J. Ou, and Y. Hu, “A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution,” Swarm Evol. Comput., vol. 69, p. 100987, 2022, doi: 10.1016/j.swevo.2021.100987.
[12] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L.d.S. Coelho, “Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization,” Expert Syst. Appl., vol. 47, pp. 106-119, 2016, doi: 10.1016/j.eswa.2015.10.039.
[13] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting in genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221-248, 1994, doi: 10.1162/evco.1994.2.3.221.
[14] C.C. Coello and M.S. Lechuga, “MOPSO: A proposal for multiple objective particle swarm optimization,” in Proc. Cong. Evol. Comput. (CEC), 2002, vol. 2, pp. 1051-1056, doi: 10.1109/CEC.2002.1004388. 
[15] J. Salimisartaghti, and S. Goli Bidgoli, “A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms,” Soft Comput. J., vol. 8, no. 1, pp. 14-28, 2019, doi: 10.22052/8.1.14 [In Persian].
[16] T. Murata and H. Ishibuchi, “MOGA: multi-objective genetic algorithms,” in IEEE Int. Conf. Evol. Comput., NJ, USA, 1995, vol. 1, pp. 289-294. 
[17] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Parallel Problem Solving from Nature PPSN VI: 6th Int. Conf., Paris, France, 2000, Springer, pp. 849-858, doi: 10.1007/3-540-45356-3_83.
[18] J. Horn, N. Nafpliotis, and D.E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization,” in Proc. 1st IEEE Conf. Evol. Comput., 1994, pp. 82-87, doi: 10.1109/ICEC.1994.350037.
[19] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” TIK Report, vol. 103, 2001, doi: 10.3929/ethz-a-004284029.
[20] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future Gener. Comput. Syst., vol. 97, pp. 849-872, 2019, doi: 10.1016/j.future.2019.02.028.
[21] H.A. Abbass, R. Sarker, and C. Newton, “PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems,” in Proc. 2001 Cong. Evol. Comput. (IEEE Cat. No. 01TH8546), 2001, vol. 2, pp. 971-978, doi: 10.1109/CEC.2001.934295. 
[22] S.-Y. Zeng et al., “A dynamic multi-objective evolutionary algorithm based on an orthogonal design,” in 2006 IEEE Int. Conf. Evol. Comput., 2006, pp. 573-580, doi: 10.1109/CEC.2006.1688361. 
[23] K. Zhong, G. Zhou, W. Deng, Y. Zhou, and Q. Luo, “MOMPA: Multi-objective marine predator algorithm,” Comput. Methods Appl. Mech. Eng., vol. 385, p. 114029, 2021, doi: 10.1016/j.cma.2021.114029
[24] S. Mirjalili, P. Jangir, and S. Saremi, “Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems,” Appl. Intell., vol. 46, pp. 79-95, 2017, doi: 10.1007/s10489-016-0825-8.
[25] N. Khodadadi, S.M. Mirjalili, W. Zhao, Z. Zhang, L. Wang, and S. Mirjalili, “Multi-objective artificial hummingbird algorithm,” in Adv. Swarm Intell. Variations Adapt. Optim. Probl., Springer, 2022, pp. 407-41, doi: 10.1007/978-3-031-09835-2_22
[26] A. Sadollah, H. Eskandar, A. Bahreininejad, and J.H. Kim, “Water cycle algorithm for solving multi-objective optimization problems,” Soft Comput., vol. 19, pp. 2587-2603, 2015, doi: 10.1007/s00500-014-1424-4.
[27] H.R. Hassanzadeh and M. Rouhani, “A multi-objective gravitational search algorithm,” in 2nd Int. Conf. Comput. Intell. Commun. Syst. Networks, 2010, pp. 7-12, doi: 10.1109/CICSyN.2010.32.
[28] J.J. Flores, R. Lopez, and J. Barrera, “Gravitational interactions optimization,” in Int. Conf. Learn. Intell. Optim., 2011, pp. 226-237, doi: 10.1007/978-3-642-25566-3_17. 
[29] M. Premkumar, P. Jangir, and R. Sowmya, “MOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems,” Knowl.-Based Syst., vol. 218, p. 106856, 2021, doi: 10.1016/j.knosys.2021.106856.
[30] M. Premkumar, P. Jangir, R. Sowmya, H.H. Alhelou, S. Mirjalili, and B.S. Kumar, “Multi-objective equilibrium optimizer: Framework and development for solving multi-objective optimization problems,” J. Comput. Des. Eng., vol. 9, no. 1, pp. 24-50, 2022, doi: 10.1093/jcde/qwab065.
[31] F. Cao, Z. Tang, C. Zhu, and X. Zhao, “An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems,” Mathematics, vol. 11, no. 18, p. 3844, 2023, doi: 10.3390/math11183844.
[32] N. Khodadadi, M. Azizi, S. Talatahari, and P. Sareh, “Multi-objective crystal structure algorithm (MOCryStAl): Introduction and performance evaluation,” IEEE Access, vol. 9, pp. 117795-117812, 2021, doi: 10.1109/ACCESS.2021.3106487.
[33] S. Yacoubi, G. Manita, H. Amdouni, S. Mirjalili, and O. Korbaa, “A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining,” Neural Comput. Appl., vol. 35, no. 8, pp. 6125-6151, 2023, doi: 10.1007/s00521-022-07985-w.
[34] F. Zou, L. Wang, X. Hei, D. Chen, and B. Wang, “Multi-objective optimization using teaching-learning-based optimization algorithm,” Eng. Appl. Artif. Intell., vol. 26, no. 4, pp. 1291-1300, 2013, doi: 10.1016/j.engappai.2012.11.006.
[35] R.V. Rao, V.J. Savsani, and D. Vakharia, “Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems,” Comput.-Aided Des., vol. 43, no. 3, pp. 303-315, 2011, doi: 10.1016/j.cad.2010.12.015.
[36] D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997, doi: 10.1109/4235.585893.
[37] E. Pira, “City councils evolution: A socio-inspired metaheuristic optimization algorithm,” J. Ambient Intell. Humaniz. Comput., pp. 1-50, 2022, doi: 10.1007/s12652-022-03765-5.
[38] J. Cao, J. Zhang, F. Zhao, and Z. Chen, “A two-stage evolutionary strategy based MOEA/D to multi-objective problems,” Expert Syst. Appl., vol. 185, p. 115654, 2021, doi: 10.1016/j.eswa.2021.115654.
[39] D.A. Van Veldhuizen and G.B. Lamont, “Multiobjective evolutionary algorithm research: A history and analysis,” Citeseer, 1998. 
[40] M.R. Sierra and C.A. Coello Coello, “Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance,” in 3rd Int. Conf. Evol. Multi-Criterion Optim. (EMO), Guanajuato, Mexico, 2005, Springer, pp. 505-519, doi: 10.1007/978-3-540-31880-4_35.
[41] M. Friedman, “A comparison of alternative tests of significance for the problem of m rankings,” Ann. Math. Statist., vol. 11, no. 1, pp. 86-92, 1940.
[42] R.F. Woolson, “Wilcoxon signed‐rank test,” Wiley encyclopedia of clinical trials, pp. 1-3, 2007, doi: 10.1002/9780471462422.eoct979.