[1] F. Hosseini, A. Shah Bahrami, M. Hajjarian, and N. Khalili Dizji, “Rotation-independent face detection using segment-based modelm” Comput. Sci. J., vol. 1, no. 1, pp. 1-6, 2016 [In Persian].
[2] H.O. Ikromovich and B.B. Mamatkulovich, “Facial Recognition Using Transfer Learning in the Deep CNN,” Int. Sci. Res. J., vol. 4, no. 3, pp. 502-507, 2023, doi: 10.17605/OSF.IO/NRMK2.
[3] S. Li and H.J. Lee, “Effective Attention-Based Feature Decomposition for Cross-Age Face Recognition,” Appl. Sci., vol. 12, no. 10, p. 4816, 2022, doi: 10.3390/app12104816.
[4] K. Chumachenko, A. Iosifidis, and M. Gabbouj, “Self-attention fusion for audiovisual emotion recognition with incomplete data,” in 26th Int. Conf. Pattern Recognit. (ICPR), Montreal, QC, Canada, 2022, pp. 2822-2828, doi: 10.1109/ICPR56361.2022.9956592.
[5] G. Rajeswari and P.I. Rani, “Face occlusion removal for face recognition using the related face by structural similarity index measure and principal component analysis,” J. Intell. Fuzzy Syst., vol. 42, no. 6, pp. 5335-5350, 2022, doi: 10.3233/JIFS-211890.
[6] H. Du, H. Shi, D. Zeng, X.-P. Zhang, and T. Mei, “The elements of end-to-end deep face recognition: A survey of recent advances,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1-42, 2022, doi: 10.1145/3507902.
[7] G. Jeevan, G.C. Zacharias, M.S. Nair, and J. Rajan, “An empirical study of the impact of masks on face recognition,” Pattern Recognit., vol. 122, p. 108308, 2022, doi: 10.1016/j.patcog.2021.108308.
[8] G. Revathy, K.B. Raj, A. Kumar, S. Adibatti, P. Dahiya, and T.M. Latha, “Investigation of E-voting system using face recognition using convolutional neural network (CNN),” Theor. Comput. Sci., vol. 925, pp. 61-67, 2022, doi: 10.1016/j.tcs.2022.05.005.
[9] M. Andrejevic and N. Selwyn, “Facial recognition technology in schools: critical questions and concerns,” Learn. Media Technol., vol. 45, no. 2, pp. 115-128, 2020, doi: 10.1080/17439884.2020.1686014.
[10] S. Ren, “Computer vision for facial analysis using human–computer interaction models,” J. Interconnect. Networks, vol. 22, pp. 1-19, 2022, doi: 10.1142/S0219265921440059.
[11] Q. Su, N. Kondo, M. Li, H. Sun, D.F. Al Riza, and H. Habaragamuwa, “Potato quality grading based on machine vision and 3D shape analysis,” Comput. Electron. Agric., vol. 152, pp. 261-268, 2018, doi: 10.1016/j.compag.2018.07.012.
[12] H.N. Vu, H.M. Nguyen, and C. Pham, “Masked face recognition with convolutional neural networks and local binary patterns,” Appl. Intell., vol. 52, no. 5, pp. 5497-5512, 2022, doi: 10.1007/s10489-021-02728-1.
[13] Z. Sharifi Mehrjard, H. Momeni, and H. Adabi Ardekani, “A review of machine learning algorithms to diagnose autism using the EEG signal,” Soft Comput. J., vol. 13, no. 1, pp. 2-19, 2024, doi: 10.22052/scj.2023.248522.1110 [In Persian].
[14] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection in unconstrained settings,” Jan. 2010, [Online]. Available: http://vis-www.cs.umass.edu/fddb/fddb.pdf.
[15] V. Esmaeili and M. Mohassel Feghhi, “Real-time Authentication for Electronic Service Applicants using a Method Based on Two-Stream 3D Deep Learning,” Soft Comput. J., vol. 11, no. 2, pp. 38-49, 2023, doi: 10.22052/scj.2023.246701.1086 [In Persian].
[16] R. Behmanesh and N. Majma, “Nephron-2 Meta-Heuristic Algorithm (NOA-2), to Solve Optimization Problems,” Soft Comput. J., vol. 11, no. 2, pp. 62-71, 2023, doi: 10.22052/scj.2023.248427.1104 [In Persian].
[17] M.T. Islam, T. Ahmed, A.B.M.R. Rashid, T. Islam, M.S. Rahman, and M.T. Habib, “Convolutional Neural Network Based Partial Face Detection,” in IEEE 7th Int. Conf. Converg. Technol. (I2CT), Pune, India, 2022, pp. 1-6, doi: 10.1109/I2CT54291.2022.9825259.
[18] D. Garg, P. Jain, K. Kotecha, P. Goel, and V. Varadarajan, “An efficient multi-scale anchor box approach to detect partial faces from a video sequence,” Big Data Cogn. Comput., vol. 6, no. 1, p. 9, 2022, doi: 10.3390/bdcc6010009.
[19] H. Yan, X. Wang, Y. Liu, Y. Zhang, and H. Li, “A new face detection method based on Faster RCNN,” J. Phys. Conf. Ser., vol. 1754, p. 012209, 2021, doi: 10.1088/1742-6596/1754/1/012209.
[20] H. Qin, J. Yan, X. Li, and X. Hu, “Joint training of cascaded CNN for face detection,” in IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), Las Vegas, NV, USA, 2016, pp. 3456-3465, doi: 10.1109/CVPR.2016.376.
[21] S.S. Farfade, M.J. Saberian, and L.-J. Li, “Multi-view face detection using deep convolutional neural networks,” in Proc. 5th ACM on Int. Conf. Multimedia Retr., Shanghai, China, 2015, pp. 643-650, doi: 10.1145/2671188.2749408.