[1] L. Zhang, P. Hou, and D. Qiang, “Transit-Oriented Development in New Towns: Identifying Its Association with Urban Function in Shanghai, China,” Buildings, vol. 12, no. 9, p. 1394, 2022, doi: 10.3390/buildings12091394.
[2] G. Caimi, L.G. Kroon, and C. Liebchen, “Models for railway timetable optimization: Applicability and applications in practice,” J. Rail Transp. Plan. Manag., vol. 6, no. 4, pp. 285-312, 2017, doi: 10.1016/j.jrtpm.2016.11.002.
[3] M. Tamnai, “Rescheduling of train movement in two-track rail routes,” PhD thesis, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, 2013 [In Persian].
[4] T. Albrecht, “Automated timetable design for demand-oriented service on suburban railways,” Public Transp., vol. 1, no. 1, pp. 5-20, 2009, doi: 10.1007/s12469-008-0003-4.
[5] P.-A. Andersson and G.-P. Scalia-Tomba, “A mathematical model of an urban bus route,” Transp. Res. Part B: Methodol., vol. 15, no. 4, pp. 249-266, 1981, doi: 10.1016/0191-2615(81)90011-4.
[6] S. Zhan, S.C. Wong, Q. Peng, and S.M. Lo, “Passenger-oriented Railway Timetable Rescheduling in a Complete Blockage,” in 14th Int. Conf. Adv. Syst. Public Transp. (CASPT), Brisbane Convention Centre, Brisbane, Australia, 2018, pp. 1-20.
[7] N. Ahmadi Asl, R. Effatnejad, M. Hedayati, and P. Hajihosseini, “Introducing a new scheme for demand response of a smart residential community with a variety of demand response models,” Karafan J., vol. 20, no. 3, pp. 311-339, 2023, doi: 10.48301/KSSA.2021.287832.1547 [In Persian].
[8] M. Goerigk and A. Schobel, Algorithm engineering in robust optimization, in Algorithm Enginerring, pp. 245-279, 2016, doi: 10.1007/978-3-319-49487-6_8.
[9] M.R. Amin-Naseri and V. Baradaran, “Accurate Estimation of Average Waiting Time in Public Transportation Systems,” Transp. Sci., vol. 49, no. 2, pp. 213-222, 2015, doi: 10.1287/trsc.2013.0514.
[10] Y. Yue, S. Wang, L. Zhou, L. Tong, and M.R. Saat, “Optimizing train stopping patterns and schedules for high-speed passenger rail corridors,” Transp. Res. Part C: Emerg. Technol., vol 63, pp. 126-146, 2016, doi: 10.1016/j.trc.2018.12.007.
[11] H. Gong, X. Chen, L. Yu, and L. Wu, “An application-oriented model of passenger waiting time based on bus departure time intervals,” Transp. Plan. Technol., vol. 39, no. 4, pp. 424-37, 2016, doi: 10.1080/03081060.2016.1160583.
[12] G. Laporte, J.A. Mesa, and F. Perea, “A game theoretic framework for the robust railway transit network design problem,” Transp. Res. Part B Methodol., vol. 44, no. 4, pp. 447-459, 2010, doi: 10.1016/j.trb.2009.08.004.
[13] M.S. Visentini, D. Borenstein, L.Q. Li, and P.B. Mirchandani, “Review of real-time vehicle schedule recovery methods in transportation services,” J. Sched., vol. 17, no. 6, pp. 541-567, 2014, doi: 10.1007/s10951-013-0339-8.
[14] N. Ghaemi, R.M. Goverde, and O. Cats, “Railway disruption timetable: Short-turnings in case of complete blockage,” in IEEE Int. Conf. Intell. Rail Transp. (ICIRT), Birmingham, UK, 2016, pp. 210-218, doi: 10.1109/ICIRT.2016.7588734.
[15] S. Shen and N.H. Wilson, “An Optimal Integrated Real-time Disruption Control Model for Rail Transit Systems,” In Computer-Aided Scheduling of Public Transport. Lecture Notes in Economics and Mathematical Systems, vol 505, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-56423-9_19.
[16] J.D. Schmocker, S. Cooper, and W. Adeney, “Metro service delay recovery: comparison of strategies and constraints across systems,” Transp. Res. Record J., vol. 1930, no. 1, pp. 30-37, 2005, doi: 10.3141/1930-04.
[17] J. Brimberg, E. Korach, M. Eben‐Chaim, and A. Mehrez, “The Capacitated p‐facility Location Problem on the Real Line,” Int. Trans. Oper. Res., vol. 8, no. 6, pp. 727-738, 2002, doi: 10.1111/1475-3995.t01-1-00334.
[18] N. Askari and M.H. Taheri, “Numerical Investigation of a MHD Natural Convection Heat Transfer Flow in a Square Enclosure with Two Heaters on the Bottom Wall,” Karafan J., vol. 17, no. 1, pp. 97-114, 2020, doi: 10.48301/kssa.2020.112759.
[19] K. Yang, Y. Lu, L. Yang, and Z. Gao, “Distributionally robust last-train coordination planning problem with dwell time adjustment strategy,” Appl. Math. Model., vol. 91, pp. 1154-1174, 2021, doi: 10.1016/j.apm.2020.10.035.
[20] A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo, “Reordering and local rerouting strategies to manage train traffic in real time,” Transp. Sci., vol. 42, no. 4, pp. 405-419, 2008, doi: 10.1287/trsc.1080.0247.
[21] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “Dispatching and coordination in multi-area railway traffic management,” Comput. Oper. Res., vol. 44, pp. 146-160, 2014, doi: 10.1016/j.cor.2013.11.011.
[22] X.J. Eberlein, N.H.M. Wilson, and D. Bernstein, “Modeling Real-Time Control Strategies In Public Transit Operations,” in Computer-Aided Transit Scheduling. Lecture Notes in Economics and Mathematical Systems, vol 471, Springer, Berlin, Heidelberg, 1999, doi: 10.1007/978-3-642-85970-0_16.
[23] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58-73, 2002, doi: 10.1109/4235.985692.
[24] B. De Schutter, T. van den Boom, and A. Hegyi, “Model predictive control approach for recovery from delays in railway systems,” Transp. Res. Record, vol. 1793, no. 1, pp. 15-20, 2002, doi: 10.3141/1793-03.
[25] M. Hasanzadeh and R. Bashizade, “Optimizing University Course Timetable Using Local Search Methods,” Soft Comput. J., vol. 1, no. 1, pp. 24-31, 2012, dor: 20.1001.1.23223707.1391.1.1.111.8 [In Persian].
[26] P.D. Site and F. Filippi, “Service optimization for bus corridors with short-turn strategies and variable vehicle size,” Transp. Res. Part A Policy Practice, vol. 32, no. 1, pp. 19-38, 1998, doi: 10.1016/S0965-8564(97)00016-5.
[27] N. Daneshpour, “Optimizing Process of Data Extraction, Transformation and Load in Data Warehouse Based on Parallel Processing,” Soft Comput. J., vol. 4, no. 2, pp.18-31, 2016, dor: 20.1001.1.23223707.1394.4.2.55.5 [In Persian].
[28] X. Luo, T. Tang, J. Yin, and H. Liu, “A robust mpc approach with controller tuning for close following operation of virtually coupled train set,” Transp. Res. Part C Emerg. Technol., vol. 151, p. 104116, 2023, doi: 10.1016/j.trc.2023.104116.
[29] X. Luo, Y. Jiang, Z. Yao, Y. Tang, and Y. Liu, “Designing Limited-Stop Transit Service with Fixed Fleet Size in Peak Hours by Exploiting Transit Data,” Transp. Res. Record, vol. 2647, no. 1, pp. 134-141, 2017, doi: 10.3141/2647-16.
[30] D. Potthoff, D. Huisman, and G. Desaulniers, “Column generation with dynamic duty selection for railway crew rescheduling,” Transp. Sci., vol. 44, no. 4, pp. 493-505, 2010, doi: 10.1287/trsc.1100.0322.
[31] Y. Lu, L. Yang, H. Yang, H. Zhou, and Z. Gao, “Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling,” Transp. Res. Part B Methodol., vol. 168, pp. 27-55, 2023, doi: 10.1016/j.trb.2022.12.008.
[32] A. Brochard, W. Pasillas-Lepine, and B. Demaya, “Cascaded Train Speed Regulation: Robustness to Feedback Delay and Measurement Filtering,” IFAC-PapersOnLine, vol. 55, no. 34, pp. 126-131, 2022, doi: 10.1016/j.ifacol.2022.11.319.
[33] Y. Wang, J. Chen, Y. Qin, and X. Yang, “Timetable rescheduling of metro network during the last train period,” Tunn. Underground Space Technol., vol. 139, p. 105226, 2023, doi: 10.1016/j.tust.2023.105226.
[34] V. Cacchiani, J. Qi, and L. Yang, “Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty,” Transp. Res. Part B Methodol., vol. 136, pp. 1-29, 2020, doi: 10.1016/j.trb.2020.03.009.
[35] C.E. Cortes, D. Saez, F. Milla, A. Nunez, and M. Riquelme, “Hybrid predictive control for real-time optimization of public transport systems’ operations based on evolutionary multi-objective optimization,” Transp. Res. Part C Emerg. Technol., vol. 18, no. 5, pp. 757-769, 2010, doi: 10.1016/j.trc.2009.05.016.
[36] Y. Wang, B. De Schutter, T.J.J. van den Boom, B. Ning, and T. Tang, “Efficient bilevel approach for urban rail transit operation with stop-skipping,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2658-2670, 2014, doi: 10.1109/TITS.2014.2323116.
[37] R.A. Chapman, H.E. Gault, and L.A. Jenkins, Factors affecting the operation of urban bus routes, Newcastle-Upon-Tyne University, England, 1981, issn: 0306-3402.
[38] A. Caprara, M. Monaci, P. Toth, and P.L. Guida, “A Lagrangian heuristic algorithm for a real-world train timetabling problem,” Discret. Appl. Math. Vol. 154, no. 5, pp. 738-753, 2006, doi: 10.1016/j.dam.2005.05.026.
[39] Z. Cao, Z. Yuan, and D. Li, “Estimation method for a skip-stop operation strategy for urban rail transit in China,” J. Mod. Transp., vol. 22, pp. 174-182, 2014, doi: 10.1007/s40534-014-0059-6.
[40] D. Canca, E. Barrena, E. Algaba, and A. Zarzo, “Design and analysis of demand‐adapted railway timetables,” J. Adv. Transp., vol. 48, no. 2, pp. 119-137, 2014, doi: 10.1002/atr.126.
[41] L. Cadarso, A. Marin, and G. Maroti, “Recovery of disruptions in rapid transit networks,” Transp. Res. Part E Logist. Transp. Rev., vol. 53, pp. 15-33, 2013, doi: 10.1016/j.tre.2013.01.013.
[42] E. Barrena, D. Canca, L.C. Coelho, and G. Laporte, “Exact formulations and algorithm for the train timetabling problem with dynamic demand,” Comput. Oper. Res., vol. 44, pp. 66-74, 2014, doi: 10.1016/j.cor.2013.11.003.
[43] R.L. Burdett and E. Kozan, “A disjunctive graph model and framework for constructing new train schedules,” Eur. J. Oper. Res., vol. 200, no. 1, pp. 85-98, 2010, doi: 10.1016/j.ejor.2008.12.005.
[44] G. Maroti, “A branch-and-bound approach for robust railway timetabling,” Public Transp., vol. 9, no. 1-2, pp. 73-94, 2017, doi: 10.1007/s12469-016-0143-x.
[45] M. Mohammadpour, B. Minaei, and H. Parvin, “Introducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems,” Soft Comput. J., vol. 8, no. 2, pp. 38-65, 2020, doi: 10.22052/8.2.38 [In Persian].