[1] S. Doostali and M. Khalily-Dermany, “A multi-hop PSO based localization algorithm for wireless sensor networks,” Soft Comput. J., vol. 8, no. 1, pp. 58-69, 2019, doi: 10.22052/8.1.58 [In Persian].
[2] M. Rezaeenejad, M. Rahiminasab, and S.A. Mousavi, “Energy Aware Routing in Wireless Sensor Networks Using Harmony Search Algorithm,” Soft Comput. J., vol. 1, no. 1, pp. 2-15, 2012, dor: 20.1001.1.23223707.1391.1.1.109.6 [In Persian].
[3] R. Rafeh and M. Totonchy, “Proposing a Distributed Fault Detection Algorithm for Wireless Sensor Networks,” Soft Comput. J., vol. 2, no. 2, pp. 26-35, 2014, dor: 20.1001.1.23223707.1392.2.2.55.1 [In Persian].
[4] C.G. Lopes and A.H. Seyed, “Diffusion Least-Mean Squares over Adaptive Networks : Formulation and Performance Analysis,” IEEE Trans. Signal Process, vol. 56, no. 7-2, pp. 3122-3136, 2008, doi: 10.1109/TSP.2008.917383.
[5] R. Abdolee, S. Saur, B. Champagne, and A. H. Sayed, “Diffusion LMS localization and tracking algorithm for wireless cellular networks,” in IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Vancouver, BC, Canada, 2013, pp. 4598-4602, doi: 10.1109/ICASSP.2013.6638531.
[6] S. Ashkezari-Toussi and H. Sadoghi-Yazdi, “Robust diffusion LMS over adaptive networks,” Signal Process., vol. 158, pp. 201-209, 2019, doi: 10.1016/j.sigpro.2019.01.004.
[7] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Comput. Networks, vol. 38, no. 4, pp. 393-422, 2002, doi: 10.1016/S1389-1286(01)00302-4.
[8] S. Tabatabaei, “An Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks,” Soft Comput. J., vol. 8, no. 2, pp. 102-115, 2020, doi: 10.22052/8.2.102 [In Persian].
[9] M. Khalily-Dermany, “A multiple criteria algorithm for planning the itinerary of mobile sink in wireless sensor networks,” Soft Comput. J., vol. 7, no. 2, pp. 74-83, 2019, dor: 20.1001.1.23223707.1397.7.2.6.7 [In Persian].
[10] F. Zafari, A. Gkelias, and K.K. Leung, “A survey of indoor localization systems and technologies,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2568-2599, 2019, doi: 10.1109/COMST.2019.2911558.
[11] J. He, Y. Geng, and K. Pahlavan, “Toward accurate human tracking: Modeling time-of-arrival for wireless wearable sensors in multipath environment,” IEEE Sens. J., vol. 14, no. 11, pp. 3996-4006, 2014, doi: 10.1109/JSEN.2014.2356857.
[12] J. Cota-Ruiz, J.-G. Rosiles, P. Rivas-Perea, and E. Sifuentes, “A Distributed Localization Algorithm for Wireless Sensor Networks Based on the Solutions of Spatially-Constrained Local Problems,” in IEEE Sens. J., vol. 13, no. 6, pp. 2181-2191, June 2013, doi: 10.1109/JSEN.2013.2249660.
[13] X. Qu and L. Xie, “An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements,” Signal Process., vol. 119, pp. 142-152, 2016, doi: 10.1016/j.sigpro.2015.08.001.
[14] T. Jia, H. Wang, X. Shen, Z. Jiang, and K. He, “Target localization based on structured total least squares with hybrid TDOA-AOA measurements,” Signal Process., vol. 143, pp. 211-221, 2018, doi: 10.1016/j.sigpro.2017.09.011.
[15] S. Tomic, M. Beko, and R. Dinis, “3-D target localization in wireless sensor networks using RSS and AoA measurements,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3197-3210, 2017, doi: 10.1109/TVT.2016.2589923.
[16] J. Shi, G. Wang, and L. Jin, “Least squared relative error estimator for RSS based localization with unknown transmit power,” IEEE Signal Process. Lett., vol. 27, pp. 1165-1169, 2020, doi: 10.1109/LSP.2020.3005298.
[17] W. Ding, Q. Zhong, Y. Wang, C. Guan, and B. Fang, “Target Localization in Wireless Sensor Networks Based on Received Signal Strength and Convex Relaxation,” Sensors, vol. 22, no. 3, p. 733, 2022, doi: 10.3390/s22030733.
[18] A.H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: challenges faced in developing techniques for accurate wireless location information,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 24-40, 2005, doi: 10.1109/MSP.2005.1458275.
[19] L.L. de Oliveira, G.H. Eisenkraemer, E.A. Carara, J.B. Martins, and J. Monteiro, “Mobile Localization Techniques for Wireless Sensor Networks: Survey and Recommendations,” ACM Trans. Sens. Networks, vol. 19, no. 2, pp. 1-39, 2023, doi: 10.1145/3561512.
[20] S. Tomic, M. Beko, L.M. Camarinha-Matos, and L.B. Oliveira, “Distributed localization with complemented RSS and AOA measurements: Theory and Methods,” Appl. Sci., vol. 10, no. 1, p. 272, 2020, doi: 10.3390/app10010272.
[21] P. Yadav and S.C. Sharma, “A Systematic Review of Localization in WSN: Machine Learning and Optimization-Based approaches,” Int. J. Commun. Syst., vol. 36, no. 4, 2023, doi: 10.1002/dac.5397.
[22] X. Zhu, W.-P. Zhu, and B. Champagne, “Spectrum sensing based on fractional lower order moments for cognitive radios in α-stable distributed noise,” Signal Process., vol. 111, pp. 94-105, 2015, doi: 10.1016/j.sigpro.2014.12.022.
[23] C. Soares and J. Gomes, “STRONG: Synchronous and asynchronous robust network localization, under non-Gaussian noise,” Signal Process., vol. 185, p. 108066, 2021, doi: 10.1016/j.sigpro.2021.108066.
[24] S.A. Kassam, Signal detection in non-Gaussian noise, Springer Science and Business Media, 1988, doi: 10.1007/978-1-4612-3834-8.
[25] I.D. Schizas, G. Mateos, and G.B. Giannakis, “Distributed LMS for consensus-based in-network adaptive processing,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2365-2382, 2009, doi: 10.1109/TSP.2009.2016226.