[1] Z. J. K. Abadi, N. Mansouri, and M. Khalouie, “Task scheduling in fog environment - Challenges, tools & methodologies: A review,” Comput. Sci. Rev., vol. 48, p. 100550, 2023, doi: 10.1016/j.cosrev.2023.100550.
[2] M. Khorasani, M. Ramezanpour, and R. Khorsand, “Energy Efficient Multi Path Routing Protocol in Internet of Things,” Soft Comput. J., vol. 7, no. 1, pp. 34-49, 2018, doi: 10.22052/7.1.34 [In Persian].
[3] S.M. Jameii, “Dynamic Service Provisioning in Fog Environment based on Learning Automata and Multi-objective Genetic Algorithm,” Soft Comput. J., vol. 11, no. 2, pp. 72-87, 2023, doi: 10.22052/SCJ.2023.248643.1115 [In Persian].
[4] M. Nickray and E. Hosseini, “A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment,” Soft Comput. J., vol. 8, no. 1, pp. 43-57, 2019, doi: 10.22052/8.1.43 [In Persian]
[5] M.S.U. Islam, A. Kumar, and Y.-C. Hu, “Context-aware scheduling in Fog computing: A survey, taxonomy, challenges and future directions,” J. Netw. Comput. Appl., vol. 180, p. 103008, 2021, doi: 10.1016/j.jnca.2021.103008.
[6] S. Azizi, M. Shojafar, J.H. Abawajy, and R. Buyya, “Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach,” J. Netw. Comput. Appl., vol. 201, p. 103333, 2022, doi: 10.1016/j.jnca.2022.103333.
[7] M.K. Hussein and M.H. Mousa, “Efficient Task Offloading for IoT-Based Applications in Fog Computing Using Ant Colony Optimization,” IEEE Access, vol. 8, pp. 37191-37201, 2020, doi: 10.1109/ACCESS.2020.2975741.
[8] H. Arri and R. Singh, “Energy Optimization-based Optimal Trade-off Scheme for Job Scheduling in Fog Computing,” in 8th Int. Conf. Comput. Sustainable Global Dev. (INDIACom), New Delhi, India, 2021, pp. 551-558.
[9] Y. Sun, F. Lin, and H. Xu, “Multi-objective Optimization of Resource Scheduling in Fog Computing Using an Improved NSGA-II,” Wirel. Pers. Commun., vol. 102, no. 2, pp. 1369-1385, 2018, doi: 10.1007/s11277-017-5200-5.
[10] K.S. Sahoo and B. Sahoo, “SDN Architecture on Fog Devices for Realtime Traffic Management: A Case Study,” in Proc. Int. Conf. Signal Netw. Comput. Syst., Springer, New Delhi, 2017, doi: 10.1007/978-81-322-3592-7_33.
[11] S. Wang, T. Zhao, and S. Pang, “Task Scheduling Algorithm Based on Improved Firework Algorithm in Fog Computing,” IEEE Access, vol. 8, pp. 32385-32394, 2020, doi: 10.1109/ACCESS.2020.2973758.
[12] S. Azizi, F. Khosroabadi, and M. Shojafar, “A priority-based service placement policy for fog-cloud computing systems,” Comput. Methods Differ. Eq., vol. 7, no. 4, pp. 521-534, 2019 [In Persian].
[13] F. Bonomi, R.A. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proc. first ed. MCC Worksh. Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13-16, doi: 10.1145/2342509.2342513.
[14] A. Yousefpour, G. Ishigaki, and J.P. Jue, “Fog Computing: Towards Minimizing Delay in the Internet of Things,” in IEEE Int. Conf. Edge Comput. (EDGE), Honolulu, HI, USA, 2017, pp. 17-24, doi: 10.1109/IEEE.EDGE.2017.12.
[15] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, “A priority, power and traffic-aware virtual machine placement of IoT applications in cloud data centers,” J. Syst. Archit., vol. 115, p. 101996, 2021, doi: 10.1016/j.sysarc.2021.101996.
[16] J. Xu, Z. Hao, R. Zhang, and X. Sun, “A Method Based on the Combination of Laxity and Ant Colony System for Cloud-Fog Task Scheduling,” IEEE Access, vol. 7, pp. 116218-116226, 2019, doi: 10.1109/ACCESS.2019.2936116.
[17] S. Misra and N. Saha, “Detour: Dynamic Task Offloading in Software-Defined Fog for IoT Applications,” IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1159-1166, 2019, doi: 10.1109/JSAC.2019.2906793.
[18] S. Ghanavati, J.H. Abawajy, and D. Izadi, “An Energy Aware Task Scheduling Model Using Ant-Mating Optimization in Fog Computing Environment,” IEEE Trans. Serv. Comput., vol. 15, no. 4, pp. 2007-2017, 2022, doi: 10.1109/TSC.2020.3028575.
[19] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, and Y. Hu, “A Multi-Objective Task Scheduling Method for Fog Computing in Cyber-Physical-Social Services,” IEEE Access, vol. 8, pp. 65085-65095, 2020, doi: 10.1109/ACCESS.2020.2983742.
[20] S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46-61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.
[21] K. Alwasel, D.N. Jha, F. Habeeb, U. Demirbaga, O.F. Rana, T. Baker, S. Dustdar, M. Villari, P. James, E. Solaiman, and R. Ranjan, “IoTSim-Osmosis: A framework for modeling and simulating IoT applications over an edge-cloud continuum,” J. Syst. Archit., vol. 116, p. 101956, 2021, doi: 10.1016/j.sysarc.2020.101956.