[1] World Health Organization, (2022, Dec. 01). Coronavirus disease 2019 (covid-19) [Online]. Available: https://www.who.int.
[2] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2-9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[3] I. Ahmed, G. Jeon, and A. Chehri, “An IoT-enabled smart health care system for screening of COVID-19 with multi layers features fusion and selection,” Computing, vol. 105, no. 4, pp. 743-760, 2023, doi: 10.1007/s00607-021-00992-0.
[4] S.D. Deb, R.K. Jha, K. Jha, and P.S. Tripathi, “A multi model ensemble based deep convolution neural network structure for detection of COVID19,” Biomed. Signal Process. Control, vol. 71, p. 103126, 2022, doi: 10.1016/j.bspc.2021.103126.
[5] M.R. Islam and M. Nahiduzzaman, “Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach,” Expert Syst. Appl., vol. 195, p. 116554, 2022, doi: 10.1016/j.eswa.2022.116554.
[6] N.S. Kavya, T. Shilpa, N. Veeranjaneyulu, and D.D. Priya, “Detecting covid19 and pneumonia from chest x-ray images using deep convolutional neural networks,” Materials Today: Proc., vol. 64, pp. 737-743, 2022, doi: 10.1016/j.matpr.2022.05.199.
[7] S. Thakur and A. Kumar, “X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN),” Biomed. Signal Process. Control, vol. 69, p. 102920, 2021, doi: 10.1016/j.bspc.2021.102920.
[8] M.S. Elpeltagy and H. Sallam, “Automatic prediction of COVID-19 from chest images using modified ResNet50,” Multim. Tools Appl., vol. 80, no. 17, pp. 26451-26463, 2021, doi: 10.1007/s11042-021-10783-6.
[9] M. Owais, H.S. Yoon, T. Mahmood, A. Haider, H. Sultan, and K.R. Park, “Light-weighted ensemble network with multilevel activation visualization for robust diagnosis of COVID19 pneumonia from large-scale chest radiographic database,” Appl. Soft Comput., vol. 108, p. 107490, 2021, doi: 10.1016/j.asoc.2021.107490.
[10] I. Lorencin et al., “Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks,” J. Pers. Med., vol. 11, no. 1, p. 28, 2021, doi: 10.3390/jpm11010028.
[11] A.M. Ismael and A. Sengur, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Expert Syst. Appl., vol. 164, p. 114054, 2021, doi: 10.1016/j.eswa.2020.114054.
[12] X. Ouyang et al., “Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia,” IEEE Trans. Medical Imaging, vol. 39, no. 8, pp. 2595-2605, 2020, doi: 10.1109/TMI.2020.2995508.
[13] J.P. Cohen, P. Morrison, L. Dao, K. Roth, T.Q. Duong, and M. Ghassemi, “Covid-19 image data collection: Prospective predictions are the future,” arXiv preprint arXiv: 2006.11988, 2020.
[14] Sarscov2-ctscan-dataset, (2022, Dec. 01). [Online]. Available:https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
[15] Mendeley Data. Extensive COVID-19 X−Ray and CT Chest Images Dataset, (2022, Dec. 01). [Online]. Available: https://doi.org/10.17632/8h65ywd2jr.3
[16] COVID-19 image data collection, (2022, Dec. 01). [Online]. Available: https://github. com/ieee8023/covid-chestxray-dataset/tree/master/images
[17] Chest-xray-pneumonia, (2022, Dec. 01). [Online]. Available:https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
[18] S. Kumar, “COVID19+PNEUMONIA+NORMAL Chest X-Ray Images,” (2022, Dec. 01). [Online]. Available:https://www.kaggle.com/sachinkumar413/covid-pneumonia-normal-chest-xray-images.
[19] M.H. Kashani, M. Madanipour, M. Nikravan, P. Asghari, and E. Mahdipour, “A systematic review of IoT in healthcare: Applications, techniques, and trends,” J. Netw. Comput. Appl., vol. 192, p. 103164, 2021, doi: 10.1016/j.jnca.2021.103164.
[20] M.M. AlyanNezhadi, M. Hosseini, H. Qazanfari, and A. Kamandi, “Content-based image retrieval using support vector machine and texture difference histogram features,” Soft Comput. J., vol. 11, no. 1, pp. 10-21, doi: 10.22052/scj.2022.246175.1053 [In Persian].
[21] B. McFee, C. Raffel, D. Liang, D.P.W. Ellis, M. McVicar, E. Battenberg, and O. Nieto, “Librosa: audio and music signal analysis in Python,” in Proc. 14th Python Sci. Conf. (SciPy), Austin, Texas, 2015, pp. 18-24, doi: 10.25080/majora-7b98e3ed003.
[22] Large COVID-19 CT scan slice dataset, (2022, Dec. 01). [Online]. Available: https://www.kaggle.com/datasets/maedemaftouni/large-covid19-ct-slice-dataset
[23] H. Zhu et al., “IoT PCR for pandemic disease detection and its spread monitoring,” Sens. Actuators B Chem., vol. 303, p. 127098, 2020, doi: 10.1016/j.snb.2019.127098.
[24] T. Yaqoob, H. Abbas, and M. Atiquzzaman, “Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices—A review,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3723-3768, 2019, doi: 10.1109/COMST.2019.2914094.
[25] M. Adil and M.K. Khan, “Emerging iot applications in sustainable smart cities for covid-19: Network security and data preservation challenges with future directions,” Sustainable Cities and Soc., vol. 75, p. 103311, 2021, doi: 10.1016/j.scs.2021.103311.
[26] A. Mirzakhani and M. Mohammadpoor, “Detection of disc destruction between lumbar vertebrae using mri images,” Soft Comput. J., vol. 9, no. 1, pp. 114-123, 2020, doi: 10.22052/scj.2021.111454 [In Persian].
[27] I. Rodriguez-Fdez, A. Canosa, M. Mucientes, and A. Bugarin, “STAC: A web platform for the comparison of algorithms using statistical tests,” in IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Istanbul, Turkey, 2015, pp. 1-8, doi: 10.1109/FUZZ-IEEE.2015.7337889.