مروری بر ویژگی‌های فناوری‌های ارتباطی در خانه‌های هوشمند و چالش‌های پیش‌رو

نوع مقاله : مقاله مروری

نویسندگان

1 دانشکده آموزش‌های الکترونیکی، دانشگاه شیراز، شیراز، ایران.

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران.

چکیده

هوشمندسازی خانه‌ها یکی از موضوعات کاربردی و پررونق در دنیای امروز است که به افراد امکان تنظیم و کنترل از راه دور تجهیزات الکترونیکی و همچنین امکان برنامه‌ریزی آنها جهت صرفه‌جویی در مصرف انرژی را می‌دهد. در سال‌های اخیر شرکت‎های مطرح سیستم‌های مختلف سخت‌افزاری و نرم‌افزاری برای تجهیزات خانگی هوشمند و همچنین فناوری‌های ارتباطی آنها عرضه کرده‎اند. این فناوری‌ها از جهات مختلفی نظیر شرایط پیاده‌سازی، هزینه، مقیاس‌پذیری، تکامل‌پذیری، امنیت و غیره با یکدیگر متفاوتند و به دلیل تنوع زیاد آنها، انتخاب یک فناوری درخور با توجه به نیازمندی و امکانات موجود دشوار به نظر می‌رسد. پر‎واضح است که لازمه طراحی و پیاده‌سازی صحیح و اصولی یک خانه هوشمند، شناخت ویژگی‌ها و محدودیت‌های این فناوری‌ها در شرایط مختلف است. این مقاله مروری به فناوری‌های متداول ارتباطی در خانه‌های هوشمند مبتنی بر سیم‌کشی‌ مجزا، خطوط برق ساختمان و ارتباطات بی‌سیم می‌پردازند و ویژگی‌ها و محدودیت‌های هر فناوری را بیان می‌کند، علاوه بر این به پژوهش‌های مرتبط و چالش‌های پیش‎رو جهت بهبود این فناوری‌ها می‌پردازد. نکات مطرح شده در مقاله به طراحان سیستم‌های هوشمند خانگی کمک می‌کند تا فناوری ارتباطی مناسبی را با توجه به شرایط موجود در خانه هوشمند انتخاب و استفاده نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A survey on the characteristics of communication technologies in smart homes and the challenges ahead

نویسندگان [English]

  • Elham Tavakoli 1
  • Alireza Keshavarz-Haddad 2
1 Department of E-learning, Shiraz University, Shiraz, Iran.
2 Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
چکیده [English]

Home intelligence is one of the most practical and thriving topics in today’s world, which allows people to adjust and control electronic equipment remotely, as well as program them to save energy. In recent years, many companies have introduced hardware and software systems as appliances and communication technologies for smart homes. These technologies differ from each other in various aspects such as implementation conditions, cost, scalability, security, etc., and due to their great diversity, it seems difficult to choose a suitable technology under given conditions. It is quite clear that the prerequisite for the proper design and implementation of a smart home is to know the features and limitations of these technologies in different conditions. This article reviews common communication technologies in smart homes based on the communication medium, i.e., wire, power lines, and wireless, and outlines the features and limitations of each technology, as well as the related research and challenges ahead to improve such technologies. Also, the highlighted points in the article can help the designers of smart home systems select and use the appropriate technology according to the conditions in a smart home. 

کلیدواژه‌ها [English]

  • Internet of things
  • Smart home
  • Smart building
  • Wired communication technology
  • Wireless communication technology
  • Security
[1] A.S. Al-sumaiti, M.H. Ahmed, and M.M.A. Salama, “Smart home activities: A literature review,” Electr. Power Compon. Syst., vol. 42, no. 3-4, pp. 294-305, 2014, doi: 10.1080/15325008.2013.832439.
[2] G. Graditi, M.G. Ippolito, R. Lamedica, A. Piccolo, A. Ruvio, E. Santini, P. Siano, and G. Izzo, “Innovative control logics for a rational utilization of electric loads and air-conditioning systems in a residential building,” Energy Build., vol. 102, pp. 1-17, 2015, doi: 10.1016/j.enbuild.2015.05.027.
[3] S.J. Darby, “Smart technology in the home: time for more clarity,” Build. Res. Inf., vol 46, no. 1, pp. 140-147, 2018, doi: 10.1080/09613218.2017.1301707.
[4] M. Rahimi, M. Songhorabadi, and M.H. Kashani, “Fog-based smart homes: a systematic review,” J. Netw. Comput. Appl., vol. 153, p. 102531, 2020, doi: 10.1016/j.jnca.2020.102531.
[5] M.O.B. Yassein, I. Hmeidi, F. Shatnawi, W. Mardini, and Y.M. Khamayseh, "Smart home is not smart enough to protect you- protocols, challenges and open issues,” in 10th Int. Conf. Emerg. Ubiquitous Syst. Pervasive Networks (EUSPN), Coimbra, Portugal, 2019, pp. 134-141, doi: 10.1016/j.procs.2019.09.453.
[6] P. Kumar, A. Braeken, A.V. Gurtov, J.H. Iinatti, and P.H. Ha., “Anonymous secure framework in connected smart home environments,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 4, pp. 968-979, 2017, doi: 10.1109/TIFS.2016.2647225.
[7] B.K. Sovacool and D.D.F. Del Rio, “Smart home technologies in Europe: a critical review of concepts, benefits, risks and policies,” Renew. Sustain. Energy Rev., vol. 120, p. 109663, 2020, doi: 10.1016/j.rser.2019.109663.
[8] R. El-Azab, “Smart homes: Potentials and challenges,” Clean Energy, vol. 5, no. 2, pp. 302-315, 2021, doi: 10.1093/ce/zkab010.
[9] S.N. Makhadmeh, A.T. Khader, M.A. Al-Betar, S. Naim, A.K. Abasi, and Z.A.A. Alyasseri, “Optimization methods for power scheduling problems in smart home: survey,” Renew. Sustain. Energy Rev., vol. 115, p. 109362, 2019, doi: 10.1016/j.rser.2019.109362.
[10] N. Panwar, S. Sharma, S. Mehrotra, L. Krzywiecki, and N. Venkatasubramanian, “Smart home survey on security and privacy,” arXiv preprint arXiv: 1904.05476, 2019.
[11] F. Saeidnejad and M. Majidi, “A survey on the security of communication networks used in power distribution networks,” Soft Comput. J., vol. 10, no. 2, pp. 16-31, 2022, doi: 10.22052/scj.2022.242847.0 [In Persian].
[12] H. Barangi, F. Raji, and A.A. Khasseh, “Blockchain security and privacy research analysis: a bibliometric study,” Soft Comput. J., vol. 9, no. 1, pp. 40-55, 2020, doi: 10.22052/scj.2021.111451 [In Persian].
[13] D. Mocrii, Y. Chen, and P. Musilek, “IoT-based smart homes: A review of system architecture, software, communications, privacy and security,” Internet Things, vol. 1-2, pp. 81-98, 2018, doi: 10.1016/j.iot.2018.08.009.
[14] A. Kailas, V. Cecchi, and A. Mukherjee, “Chapter 2-a survey of contemporary technologies for smart home energy management,” in Handbook of Green Information and Communication Systems, Academic Press, pp. 35-56, 2013, doi: 10.1016/B978-0-12-415844-3.00002-4.
[15] T.D.P. Mendes, R. Godina, E.M.G. Rodrigues, J.C.O. Matias, and J.P.S. Catalao, “Smart home communication technologies and applications: wireless protocol assessment for home area network resources,” Energies, vol. 8, no. 7, pp. 7279-7311, 2015, doi: 10.3390/en8077279.
[16] E. Shailendra and P.K. Bhatia, “Analyzing home automation and networking technologies,” in IEEE Potentials, vol. 37, no. 1, pp. 27-33, 2018, doi: 10.1109/MPOT.2015.2493184.
[17] M. Poulakis, S. Vassaki, G.T. Pitsiladis, C. Kourogiorgas, A. Panagopoulos, G. Gardikis, and S. Costicoglou, “Wireless sensor network management using satellite communication technologies,” in Emerging Communication Technologies Based on Wireless Sensor Networks, CRC Press, pp. 201-232, 2016, doi: 10.1201/b20085-12.
[18] R. Heartpeld, G. Loukas, S. Budimir, A. Bezemskij, J.R.J. Fontaine, A. Filippoupolitis, and E.B. Roesch, “A taxonomy of cyber- physical threats and impact in the smart home,” Comput. Secur., vol. 78, pp. 398-428, 2018, doi: 10.1016/j.cose.2018.07.011.
[19] K. Lohia, Y. Jain, C. Patel, and N. Doshi, “Open communication protocols for building automation systems,” in 10th Int. Conf. Emerg. Ubiquitous Syst. Pervasive Networks (EUSPN), Coimbra, Portugal, 2019, pp. 723-727, doi: 10.1016/j.procs.2019.11.020.
[20] M. Wang, E. Lin, E. Woertz, and M. Kam, “Collision resolution simulation for distributed control architectures using LonWorks,” in IEEE Int. Conf. Autom. Sci. Eng. (CASE) Edmonton, Alberta, Canada, 2005, pp. 319-326, doi: 10.1109/COASE.2005.1506789.
[21] L. Yonge, J. Abad, K. Afkhamie, L. Guerrieri, S. Katar, H. Lioe, P. Pagani, R. Riva, D.M. Schneider, and A. Schwager, “HomePlug AV2: next-generation broadband over power line,” in MIMO power line communications, CRC Press, pp. 391-426, 2014.
[22] A.G. Merkulov and V.P. Shuvalov, “The perspectives and practice of plc homeplug av modems application in the network devices and industrial tools,” in 1st Global Power Energy Commun. Conf. (GPECOM), Nevsehir, Turkey, 2019, pp. 46-49, doi: 10.1109/GPECOM.2019.8778575.
[23] C. Cano and D. Malone, “On efficiency and validity of previous Homeplug MAC performance analysis,” Comput. Networks, vol. 83, pp. 118-135, 2015, doi: 10.1016/j.comnet.2015.03.005.
[24] J. Vanus, J. Belesova, R. Martinek, P. Bilik, J. Zidek, and L. Koval, L., “Development of software tool for operational and technical functions control in smart home with knx technology,” IFAC-PapersOnline, vol. 49, no. 25, pp. 431-436, 2016, doi: 10.1016/j.ifacol.2016.12.088.
[25] S. Marksteiner, V. J. Exposito Jimenez, H. Valiant and H. Zeiner, "An overview of wireless IoT protocol security in the smart home domain," in Internet Things Bus. Model. Users Networks, Copenhagen, Denmark, 2017, pp. 1-8, doi: 10.1109/CTTE.2017.8260940.
[26] F. Sapundzhi, “A survey of knx implementation in building automation,” TEM J., vol. 9, no. 1, pp. 144‐148, 2020, doi: 10.18421/TEM91-20.
[27] O. Horyachyy, “Comparison of wireless communication technologies used in a smart home: analysis of wireless sensor node based on Arduino in home automation scenario,” Master thesis, Faculty of Computing, Blekinge Institute of Technology, Karlskrona Sweden, 2017.
[28] V.A. Orfanos, S.D. Kaminaris, D. Piromalis, and P. Papageorgas, “Smart home automation in the iot era: a communication technologies review,” in AIP Conf. Proc., 2020, p. 20054, doi:10.1063/5.0032939.
[29] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica, “Performance evaluation of Bluetooth low energy: a systematic review,” Sensors, vol. 17, no. 12, p. 2898, 2017, doi: 10.3390/s17122898.
[30] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D.A. Wagner, “Smart locks: Lessons for securing commodity internet of things devices,” in Proc. 11th ACM Asia Conf. Comput. Commun. Secur. (AsiaCCS), Xi’an, China, 2016, pp. 461-472, doi: 10.1145/2897845.2897886.
[31] F. Xu, W. Diaoyz, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: breaking android security mechanisms via malicious bluetooth peripherals,” in 26th Ann. Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, California, USA, 2019.
[32] A. Hafeez, N.H. Kandil, B. Al-Omar, T. Landolsi, and A.-R. Al-Ali, “Smart home area networks protocols within the smart grid context,” J. Commun., vol. 9, no. 9, pp. 665-671, 2014, doi: 10.12720/jcm.9.9.665-671.
[33] G.M. Toschi, L.B. Campos, and C.E. Cugnasca, “Home automation networks: a survey,” Comput. Stand. Interfaces, vol. 50, pp. 42-54, 2017, doi: 10.1016/j.csi.2016.08.008.
[34] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Review of communication technologies for smart homes/building applications,” in IEEE Innov. Smart Grid Technol. Asia (ISGT ASIA), Bangkok, Thailand, 2015, pp. 1-6, doi: 10.1109/ISGT-Asia.2015.7437036.
[35] Z. Chen, C. Lin, H. Wen, and H. Yin, “An analytical model for evaluating IEEE 802.15. 4 CSMA/CA protocol in low-rate wireless application,” in 21st Int. Conf. Adv. Inf. Networking Appl. (AINA), vol. 2, Niagara Falls, Canada, 2007, pp. 899-904, doi: 10.1109/AINAW.2007.77.
[36] S. Tabatabaei, “An energy efficient clustering method using bat algorithm and mobile sink in wireless sensor networks,” Soft Comput. J., vol. 8, no. 2, pp. 102-115, doi: 10.22052/8.2.102 [In Persian].
[37] S.J. Danbatta and A. Varol, “Comparison of zigbee, z-wave, wi-fi, and bluetooth wireless technologies used in home automation,” in 7th Int. Symp. Digital Forensics Secur. (ISDFS), Barcelos, Portugal, 2019, pp. 1-5, doi: 10.1109/ISDFS.2019.8757472.
[38] J. Ploennigs, U. Ryssel, and K. Kabitzsch, “Performance analysis of the EnOcean wireless sensor network protocol,” in Proc. 15th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Bilbao, Spain, 2010, pp. 1-9, doi: 10.1109/ETFA.2010.5641313.
[39] J. Tonejc, J. Kaur, A. Karsten, and S. Wendzel, “Visualizing BACnet data to facilitate humans in building-security decision-making,” in 3rd Int. Conf. Hum. Aspects Inf. Secur. Priv. Trust, Los Angeles, CA, USA, 2015, pp.693-704, 2015, doi: 10.1007/978-3-319-20376-8_62.