[1] T.G. Ksiazek et al., “A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome,” N. Engl. J. Med., vol. 348, no. 20, pp. 1953–1966, 2003, doi: 10.1056/nejmoa030781.
[2] C. Drosten et al., “Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome,” N. Engl. J. Med., vol. 348, no. 20, pp. 1967–1976, 2003, doi: 10.1056/nejmoa030747.
[3] S.K.P. Lau, P.C.Y. Woo, K.S.M. Li, Y. Huang, H.-W. Tsoi, B.H.L. Wong, S.S.Y. Wong, S.-Y. Leung, K.-H. Chan, and K.-Y. Yuen, “Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats,” Proc. Natl. Acad. Sci. USA., vol. 102, no. 39, pp. 14040–14045, 2005, doi: 10.1073/pnas.0506735102.
[4] W. Li et al., “Bats are natural reservoirs of SARS-like coronaviruses,” Science, vol. 310, no. 5748, pp. 676–679, 2005, doi: 10.1126/science.1118391.
[5] X.-Y. Ge et al., “Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor,” Nature, vol. 503, no. 7477, pp. 535–538, 2013, doi: 10.1038/nature12711.
[6] A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D.M.E. Osterhaus, and R.A.M. Fouchier, “Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia,” N. Engl. J. Med., vol. 367, no. 19, pp. 1814–1820, 2012, doi: 10.1056/nejmoa1211721.
[7] E.I. Azhar, S.A. El-Kafrawy, S.A. Farraj, A.M. Hassan, M.S. Al-Saeed, A.M. Hashem, and T.A. Madani, “Evidence for Camel-to-Human Transmission of MERS Coronavirus,” N. Engl. J. Med., vol. 370, no. 26, pp. 2499–2505, 2014, doi: 10.1056/nejmoa1401505.
[8] J.F. Drexler, V.M. Corman, and C. Drosten, “Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS,” Antiviral Res., vol. 101, no. 1, pp. 45–56, 2014, doi: 10.1016/j.antiviral.2013.10.013.
[9] S. Anthony at al., “Global patterns in coronavirus diversity,” Virus Evol., vol. 3, no. 1, vex012, 2017, doi: 10.1093/ve/vex012.
[10] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan, and G. Chowell, “Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020,” Infectious Disease Model., vol. 5, pp. 256-263, 2020, doi: 10.1016/j.idm.2020.02.002.
[11] L. Yan et al., “Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan,” medRxiv, 2020, doi: 10.1101/2020.02.27.20028027.
[12] S.B. Stoecklin et al., “First cases of coronavirus disease 2019 (COVID-19) in France: Surveillance, investigations and control measures, January 2020,” Euro surveillance, vol. 25, no. 6, p. 2000094, 2020, doi: 10.2807/1560-7917.ES.2020.25.6.2000094.
[13] Coronavirus, (Mar. 20, 2021), [Online]. Available: https://www.who.int/health-topics/coronavirus.
[14] A. Mckeever, (Mar. 20, 2021), Here’s what coronavirus does to the body, [Online]. Available: https://www.nationalgeographic.com/science/2020/02/here-is-what-coronavirus-does-to-the-body/.
[15] Worldometer, (Mar. 20, 2021) Coronavirus Update (Live): Cases and Deaths from COVID-19 Virus Pandemic, [Online]. Available: https://www.worldometers.info/coronavirus.
[16] R. Akhoondi and R. Hosseini, “A Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction,” Soft Comput. J., vol. 6, no. 2, pp. 32-47, 2018, dor: 20.1001.1.23223707.1396.6.2.3.7 [In Persian].
[17] H. Abbasi, M. Shamsi, and A. Rasuli Kenari, “Approaches of user activity detection and a new fuzzy logic-based method to determine the risk amount of user unusual activity in the smart home,” Soft Comput. J., vol. 9, no. 2, pp. 2-13, 2021, doi: 10.22052/scj.2021.242812.0 [In Persian].
[18] S. Elgharbi, M. Esghir, O. Ibrihich, A. Abarda, S. El Hajji, and S. Elbernoussi, “Grey-Markov Model for the Prediction of the Electricity Production and Consumption,” in: Y. Farhaoui, (eds) Big Data and Networks Technologies (BDNT), Lecture Notes in Networks and Systems, vol 81, Springer, Cham, 2020, doi:10.1007/978-3-030-23672-4_16.
[19] J. Yurkiewicz, “Operations research: Applications and algorithms”, Networks, vol. 19, no. 5, pp. 616-618, 1989, doi: 10.1002/net.3230190512.
[20] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2-9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[21] X. Guo and J. Luo, “Stationary distribution and extinction of SIR model with nonlinear incident rate under Markovian switching,” Phys. A Stat. Mech. its Appl., vol. 505, pp. 471–481, 2018, doi: 10.1016/j.physa.2018.02.024.
[22] R. Pir Mohammadiani, S. Mohammadi, and Z. Malik, “Understanding the relationship strengths in users’ activities, review helpfulness and influence,” Comput. Hum. Behav., vol. 75, pp. 117–129, 2017, doi: 10.1016/j.chb.2017.03.065.
[23] T.E. Krak, J. De Bock, and A. Siebes, “Imprecise continuous-time Markov chains,” Int. J. Approx. Reason., vol. 88, pp. 452-528, 2017, doi: 10.1016/j.ijar.2017.06.012.
[24] J. De Bock, “The Limit Behaviour of Imprecise Continuous-Time Markov Chains,” J. Nonlinear Sci., vol. 27, no. 1, pp. 159–196, 2017, doi: 10.1007/s00332-016-9328-3.
[25] P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Math. Biosciences, vol. 180, no. 1-2, pp. 29-48, 2002, doi: 10.1016/S0025-5564(02)00108-6.
[26] M. Tambuscio, D.F.M. Oliveira, G.L. Ciampaglia, and G. Ruffo, “Network segregation in a model of misinformation and fact-checking,” J. Comput. Soc. Sci., vol. 1, no. 2, pp. 261–275, Sep. 2018, doi: 10.1007/s42001-018-0018-9.
[27] A. Kaeck, P. Rodrigues, and N.J. Seeger, “Equity index variance: Evidence from flexible parametric jump-diffusion models,” J. Bank. Finance, vol. 83, pp. 85-103, 2017, doi: 10.1016/j.jbankfin.2017.06.010.
[28] Y. Yang and G. Xie, “Efficient identification of node importance in social networks,” Inf. Process. Manag., vol. 52, no. 5, pp. 911–922, 2016, doi: 10.1016/j.ipm.2016.04.001.
[29] Z. Wang, C. Du, J. Fan, and Y. Xing, “Ranking influential nodes in social networks based on node position and neighborhood,” Neurocomputing, vol. 260, pp. 466–477, 2017, doi: 10.1016/j.neucom.2017.04.064.
[30] F. Wang, W. Jiang, X. Li, and G. Wang, “Maximizing positive influence spread in online social networks via fluid dynamics,” Futur. Gener. Comput. Syst., vol. 86, pp. 1491–1502, 2018, doi: 10.1016/j.future.2017.05.050.
[31] O. Gillath, G.C. Karantzas, and J. Lee, “Attachment and social networks,” Curr. Opin. Psychol., vol. 25, pp. 21–25, 2019, doi: 10.1016/j.copsyc.2018.02.010.
[32] D. Xue and S. Hirche, “Distributed topology manipulation to control epidemic spreading over networks,” IEEE Trans. Signal Process., vol. 67, no. 5, pp. 1163–1174, 2019, doi: 10.1109/TSP.2018.2887211.
[33] X. Rui, F. Meng, Z. Wang, G. Yuan, and C. Du, “SPIR: The potential spreaders involved SIR model for information diffusion in social networks,” Phys. A Stat. Mech. its Appl., vol. 506, pp. 254–269, 2018, doi: 10.1016/j.physa.2018.04.062.
[34] A. Hoxha, (Dec. 1, 2021), Global excess deaths associated with COVID-19, January 2020 - December 2021, [Online]. Available: https://www.who.int/data/stories/global-excess-deaths-associated-with-covid-19-january-2020-december-2021.
[35] S.Hoge and S.Bansel, (Nov. 28, 2021), Coronavirus disease, [Online]. Available: https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19.html.
[36] A.Bourla and S.Susman, (May. 6, 2021), Pfizer Safety Reporting, [Online]. Available: https://www.pfizersafetyreporting.com.