[1] D. Mane, N. Londhe, N. Patil, O. Patil, and P. Vidhate, “A survey on diabetic retinopathy detection using deep learning,” in Data Engineering for Smart Systems, P. Nanda, V. K. Verma, S. Srivastava, R. K. Gupta, and A. P. Mazumdar, Eds., vol. 238. Singapore: Springer Singapore, 2022, pp. 621–637, doi: 10.1007/978-981-16-2641-8_59.
[2] D. A. Antonetti, P. S. Silva, and A. W. Stitt, “Current understanding of the molecular and cellular pathology of diabetic retinopathy,” Nat. Rev. Endocrinol., vol. 17, pp. 195–206, 2021, doi: 10.1038/s41574-020-00451-4.
[3] T. Monisha Birlin and C. Divya, Comparison of Various Segmentation Techniques in Diabetic Retinopathy-A Review. Cham: Springer International Publishing, 2022, pp. 73–79, doi: 10.1007/978-3-030-96634-8_7.
[4] G. Prouski, M. Jafari, and H. Zarrabi, “Internet of things in eye diseases, introducing a new smart eyeglasses designed for probable dangerous pressure changes in human eyes,” in International Conference on Computer and Applications, ICCA 2017, Doha, United Arab Emirates, September 6-7, 2017. IEEE, 2017, pp. 364–368, doi: 10.1109/COMAPP.2017.8079762.
[5] G. S. Crabtree and J. S. Chang, “Management of complications and vision loss from proliferative diabetic retinopathy,” Curr. Diab. Rep., vol. 21, p. 33, 2021, doi: 10.1007/s11892-021-01396-2.
[6] M. Jafari, “Internet of things in eye diseases using smart glasses,” Int. J. Eng. Educ. (IJEE), vol. 9, no. 3, pp. 1034–1042, 2017.
[7] W. S. Oliveira, T. I. Ren, and G. D. C. Cavalcanti, “An unsupervised segmentation method for retinal vessel using combined filters,” in IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012. IEEE Computer Society, 2012, pp. 750–756, doi: 10.1109/ICTAI.2012.106.
[8] H. Abdellahoum, N. Mokhtari, A. Brahimi, and A. Boukra, “CSFCM: an improved fuzzy c-means image segmentation algorithm using a cooperative approach,” Expert Syst. Appl., vol. 166, p. 114063, 2021, doi: 10.1016/J.ESWA.2020.114063.
[9] S. Mishra, D. Z. Chen, and X. S. Hu, “A data-aware deep supervised method for retinal vessel segmentation,” in 17th IEEE International Symposium on Biomedical Imaging, ISBI 2020, Iowa City, IA, USA, April 3-7, 2020. IEEE, 2020, pp. 1254–1257, doi: 10.1109/ISBI45749.2020.9098403.
[10] D. Wang, A. Haytham, J. Pottenburgh, O. Saeedi, and Y. Tao, “Hard attention net for automatic retinal vessel segmentation,” IEEE J. Biomed. Health Informatics, vol. 24, no. 12, pp. 3384–3396, 2020, doi: 10.1109/JBHI.2020.3002985.
[11] E. Emary, H. M. Zawbaa, A. E. Hassanien, and B. Pârv, “Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search,” Adv. Data Anal. Classif., vol. 11, no. 3, pp. 611–627, 2017, doi: 10.1007/S11634-016-0257-7.
[12] R. Al Shehhi, P. R. Marpu, and W. L.Woon, “An automatic cognitive graph-based segmentation for detection of blood vessels in retinal images,” Math. Probl. Eng., vol. 2016, no. 1, p. 7906165, 2016, doi: 10.1155/2016/7906165.
[13] L. Hakim, M. S. Kavitha, N. Yudistira, and T. Kurita, “Regularizer based on euler characteristic for retinal blood vessel segmentation,” Pattern Recogn. Lett., vol. 149, pp. 83–90, 2021, doi: 10.1016/j.patrec.2021.05.023.
[14] E. Uysal and G. E. Guraksin, “Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks,” Multim. Tools Appl., vol. 80, no. 3, pp. 3505–3528, 2021, doi: 10.1007/S11042-020-09372-W.
[15] B. Wang, S. Wang, S. Qiu, W. Wei, H. Wang, and H. He, “Csu-net: A context spatial u-net for accurate blood vessel segmentation in fundus images,” IEEE J. Biomed. Health Informatics, vol. 25, no. 4, pp. 1128–1138, 2021, doi: 10.1109/JBHI.2020.3011178.
[16] M. Jafari, “A novel method for extracting blood vessels in digital retinal images,” Soft Comput. J., vol. 10, no. 1, pp. 110–121, 2021, doi: 10.22052/scj.2022.243171.1000 [In Persian].