ارائه یک روش مبتنی بر پردازش مه سیار برای اجرای برنامه‌های دستگاه‌های هوشمند در محیط امن

نویسندگان

دانشگاه قم

چکیده

با رشد چشمگیر برنامه‌های دستگاه‌های هوشمند و اینترنت اشیاء حجم تبادلات و داده‌ها در شبکه افزایش پیدا کرده است. معماری متمرکز و سنتی پردازش ابر با توجه به تأخیر و  انبوه درخواست‌ها، پاسخگوی تقاضای زیاد کاربران و اجرای مناسب برنامه‌های حساس به تأخیر و بی‌درنگ نیست. در این مقاله یک معماری مبتنی بر پردازش مه سیار مجازی برای حل این چالش‌ها ارائه شد که لایه‌ای میان برنامه‌های تلفن‌همراه و لایه ابر ایجاد می‌کند. ذخیره‌سازی، پردازش و ارتباطات امن در این لایه در گره‌های مجزای مستقل از ابر انجام می‌شود. هرکدام از این گره‌ها به‌صورت مجازی بر روی یک سرور واحد پیاده‌سازی می‌شوند. ما یک برنامه واقعیت افزوده مبتنی بر نشانگر با نمایش اشیاء سه‌بعدی پویا در سیستم هوشمند اندروید ارائه دادیم و کارکرد آن را در معماری مبتنی بر ابر و معماری پیشنهادی در دو شبکه اینترنت همراه 4جی و مخابرات ارزیابی کردیم. نتایج ارزیابی کارکرد بهینه‌تر معماری پیشنهادی را در هر دو شبکه ارتباطی نشان می‌دهد. اجرای مدل‌های سه‌بعدی با حجم بالا با استفاده از اینترنت مخابرات در معماری مبتنی بر مه سیار ارائه شده، سریع بوده و انتظار یک برنامه بی‌درنگ را برآورده می‌کند. 

کلیدواژه‌ها


عنوان مقاله [English]

A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment

نویسندگان [English]

  • mohsen nickray
  • entesar hosseini
چکیده [English]

With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we propose a Virtual Mobile Fog Computing-based architecture through creating a layer between the smart phone applications and the cloud. Data storing and processing and secured communication are performed in this layer in the separate nodes that are independent of the cloud. Each of these nodes is implemented virtually on a single server. We presented a marker-based add-on reality with dynamic 3D display in Android smart systems and evaluated its functionality in a cloud-based and proposed architectures through 4G and Wi-Fi Internet networks. The evaluation results show the optimal performance of the proposed architecture in both communication networks. Moreover, they show the execution of high-volume 3D models using Wi-Fi in a Mobile Fog architecture is fast and convenient for real time applications. 

کلیدواژه‌ها [English]

  • Smart devices
  • Internet of things
  • Cloud
  • Virtual Mobile Fog Computing
  • Add-on reality
  • Real-time
  1. [1] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research Opportunities”, IEEE Internet Things J. 3, pp. 854-864, 2016. [2] R. Roman, J. Lopez and M. Mambo, “Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges”, Future Generation Computer Systems, in press, corrected proof, Available online 12 November 2016. [3] M. Satyanarayanan, “A brief history of cloud offload: A personal journey from Odyssey through cyber foraging to cloudlets”, Mob. Computer. Commun. 18 (4), pp. 19–23, 2015. [4] Munir, Arslan, Prasanna Kansakar, and Samee U. Khan. "IFCIoT: integrated fog cloud IoT architectural paradigm for future internet of things." arXiv preprint arXiv:1701.08474 ,2017 [5] M.T. Beck and M. Maier, “Mobile edge computing: Challenges for future virtual network embedding algorithms”, in: Proceedings of the eighth International Conference on Advanced Engineering Computing and Applications in Sciences, ADVCOMP, pp. 65–70, 2014. [6] ETSI, Mobile-Edge Computing Introductory Technical White Paper, 2014, http://www.etsi.org/technologies clusters/technologies/mobile-edge-computing ptc/2017.06.03. [7] Sh. Weisong, C. Jie, Quan Zhang, L. Youhuizi, X. Lanyu,"Edge computing: Vision and challenges", IEEE Internet of Things Journal, pp. 637-646, 2016. [8] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge networks: Convergence of computing, caching and communications,” IEEE Access, to appear,2016. [9] D. Kreutz, F. Ramos, P. E. Verissimo, C. Esteve Rothenberg, S. Azodolmolky and S. Uhlig, “Software-defined networking: A comprehensive survey”, Proc. IEEE 103 (1), pp. 14–76,2015. [10] N. Kumar, S. Zeadally and J.J.P.C. Rodrigues, “Vehicular delay-tolerant networks for smart grid data management using mobile edge computing”, IEEE Commun. Mag, pp. 5460-66, 2016. [11] Y. Ai, M. Peng and K. Zhang, “Edge Computing Technologies for Internet of Things: A Primer, Digital Communications and Networks”, in press, accepted manuscript, 2017. [12] S. Anglin, E. Buckingham, G. Cornell, L. Corrigan, M. Ertel, J. Gennick, J. Hassell, R. Hutchinson, M. Lowman, J. Markham, M. Moodie, J. Olson, J. Pepper, D. Pundick, B. R. Clarke, D. Shakeshaft, G. Spearing, M. Wade, T. Welsh, C. Collins, Ch. Ricketts, V. Moore and N. Sixsmith, ConText Editorial Services ProAgumented Reality, pp.7-41, 2012. [13] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog computing and its role in the Internet of things”, in: Proceedings of the first Edition of the MCC Workshop on Mobile Cloud Computing, pp.13-16, 2012. [14] W.S. Chin, H. soo Kim, Y.J. Heo and J.W. Jang,” A context-based future network infrastructure for IoT services”, Procedia Comput. Sci. 56, pp. 266–270, 2015. [15] S. Datta, C. Bonnet and J. Haerri, “Fog computing architecture to enable consumer centric Internet of things services”, in: Proceedings of the 2015 IEEE International Symposium on Consumer Electronics, pp. 1–2, 2015. [16] IBM News Releases, IBM and Nokia Siemens Networks announce world first mobile edge computing platform, 2013. http://www/03.ibm.com/press/us/en/pressrelease/40490.wss, PTC 2017.07.14. [17] J.O. F. Portillo, I. T. Puente and F. L. Malaina, “Radio-aware service-level scheduling to minimize downlink traffic delay through mobile edge computing”, in: Proceedings of the seventh EAI International Conference on Mobile Networks and Management, pp. 1–14, 2015. [18] S. Misra and S. Sarkar, “Theoretical modelling of fog computing: a green computing paradigm to support IoT applications”, IET Networks. Five, pp. 23–29, 2016. [19] D. Lanka, Ch. Lakshmi Veenadhari and D. Suryanarayana. “Application of Fog Computing in Military Operations”, International Journal of Computer Applications 164(6): pp.10-15, April 2017. [20] M. Zhanikeev, “A cloud visitation platform to facilitate cloud federation andfog computing”, Computer 48 (5), pp. 80–83, 2015. [21] Abolfazli, Z. Sanaei, E. Ahmed, A. Gani and R. Buyya,” Cloud-Based augmentation for mobile devices: Motivation, taxonomies and open challenges”, arXiv preprint: 1306.4956, 2013. [22] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, Ch. Thuemmler, H. Feussner and A. Schneider, “Enabling Real-Time Context-Aware Collaborationthrough 5G and Mobile Edge Computing”, 12th International Conference on Information Technology - New Generations, 2015. [23] H. Kchaou, Z. Kechaou and A. M. Alimi, “Towards an Offloading Framework based on Big Data Analytics in Mobile Cloud Computing Environments”, Procedia Comput. Sci.53, pp. 292–297, 2015. [24] C.Vuppalapati, A. Ilapakurti, and S. Kedari, “The Role of Big Data in Creating Sense EHR, an Integrated Approach to Create Next Generation Mobile Sensor and Wearable Data Driven Electronic Health Record (EHR)”, Proc.2016 IEEE 2nd Int. Conf, Big Data Comput, pp. 293–296, 2016. [25] V. Sharma, J. Deok Lim, J. Nyeo Kim, and Ilsun You” SACA: Self-Aware Communication Architecture for IoT Using Mobile Fog Servers”, Mobile Information Systems, 2017. [26] A. A. Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile edge computing-based augmented reality applications,” IEEE Wireless Commun. Lett. Vol. PP, no. 99, Apr. 2017. [27] P. Hsuan Chiu, P. Hsuan Tseng and K.Ten Feng, “Cloud Computing Based Mobile Augmented Reality Interactive System”, Published in Wireless Communications and Networking Conference (WCNC), IEEE, 2014. [28] B.Ruei Huangy, Ch. Hong Liny and Ch.Han Lee,”Mobile Augmented Reality Based on Cloud Computing”, Published in: Anti-Counterfeiting, Security and Identification (ASID), 2012. [29] F. Bonomi, R. Milito, P. Natarajan and J. Zhu, “Fog computing: A platform for Internet of things and analytics”, in: N. Bessis, C. Dobre (Eds.), Big Data and Internet of Things: A Roadmap for Smart Environments, vol.546,SpringerInternationalPublishi ng, pp. 169–186, 2014. [30] J. Zao, T.T. Gan, C.K. You, S. Rodriguez Mendez, C.E. Chung, Y.T. Wang, T. Mullen and T.P. Jung, “Augmented brain computer interaction based on fog computing and linked data”, in: Proceedings of the International Conference on Intelligent Environments, pp. 374–377, 2014. [31] M. Yuyi, Y. Changsheng, J. Zhang, K. Huang and B. Kh. Letaief, “A Survey on Mobile Edge Computing”: The Communication Perspective, submitted to IEEE Commun. Surveys Tuts, 2107. [32] M.R. Rahimi, J. Ren, C.H. Liu, A.V. Vasilakos and N. Venkatasubramanian, “Mobile cloud computing: A survey, state of art and future directions”, Appl. 19 (2), pp. 133–143, 2014. [33] J. Zhang, Yu Fangqiang, Li Ding, and Hu Zhenzhong. “Development and implementation of an industry foundation classes-based graphic information model for virtual construction Computer”, Aided Civil and Infrastructure Engineering, pp.60–74, 2014. [34] Junaio, http://dev.metaio.com/junaio/PTC/ 2016-08-17. [35] B. Petit, J.D. Lesage, E. Boyer, J.S. Franco and B. Raffin, “Remote and collaborative 3D intera actions”, pp. 269–270, 2011. [36] P. Nawrocki and W. Reszelewski, “Resource usage optimization in Mobile Cloud Computing”, Computer communications, 2016.