[1] S.F. Aliabadi and S.A. Taher, “Load frequency control by using fuzzy-PID controller with optimized membership functions,” Soft Comput. J., vol. 9, no. 2, pp. 34-43, 2021, doi: 10.22052/scj.2021.242834.0 [In Persian].
[2] M.J. Nadjafi-Arani and S. Doostali, “Cost-based workflow scheduling using algebraic structures,” Soft Comput. J., vol. 9, no. 2, pp. 114-129, 2021, doi: 10.22052/scj.2021.242814.0 [In Persian].
[3] S.M. Babamir and N. Zahiri, “A method to simplify patterns with probabilistic structure in web service composition,” Soft Comput. J., 2022, doi: 10.22052/scj.2023.246636.1084 [In Persian].
[4] W. Krull, “Axiomatische begrundung der allgemeinen ideal theorie,” Sitzungsberichte der physikalisch medizinischen, Societat der Erlangen, vol 56, pp. 47-63, 1924, doi: 10.1515/9783110801026.149.
[5] R.P. Dilworth, “Abstract residuation over lattices,” Bull. Amer. Math. Soc., vol. 44, no 4, pp. 262-268, 1938.
[6] R.P. Dilworth, “Non-commutative residuated lattices,” Trans. Amer. Math. Soc., vol. 46, pp. 426-444, 1939.
[7] M. Ward, “Residuation in structures over which a multiplication is defined,” Duke Math. J., vol. 3, no. 4, pp. 627-636, 1937, doi: 10.1215/S0012-7094-37-00351-X.
[8] M. Ward, “Structure Residuation,” Annals of Mathematics, 2nd Ser., vol. 39, no. 3, pp. 558-568, 1938, doi: 10.2307/1968634.
[9] M. Ward, “Residuated distributive lattices,” Duke Math. J., vol. 6, no. 3, pp. 641-651, 1940, doi: 10.1215/S0012-7094-40-00649-4.
[10] M. Ward and R.P. Dilworth, “Residuated Lattices,” Proc. Natl. Acad. Sci., vol. 24, pp. 162-164, 1938, doi: 10.1073/pnas.24.3.16.
[11] M. Ward and R.P. Dilworth, “Residuated lattices,” Trans. Amer. Math. Soc., vol. 45, pp. 335-354, 1939.
[12] U. Hohle, “Commutative, residuated 1—monoids,” in: Hohle, U., Klement, E.P. (eds) Non-Classical Logics and their Applications to Fuzzy Subsets. Theory and Decision Library, vol 32. Springer, Dordrecht. 1995, doi: 10.1007/978-94-011-0215-5_5.
[13] M. Okada and K. Terui, “The Finite Model Property for Various Fragments of Intuitionistic Linear Logic,” J. Symb. Log., vol. 64, no. 2, pp. 790-802, 1999, doi: 10.2307/2586501.
[14] W.J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Am. Math. Soc., vol. 396, Amer. Math. Soc., Providence, 1989.
[15] S. Rasouli and A. Radfar, “PMTL filters, Rl filters and PBL filters in residuated lattices,” J. Mult. Valued Log. Soft Comput., vol. 29, no. 6, pp. 551–576. 2017.
[16] S. Rasouli, “Heyting, Boolean and pseudo-MV filters in residuated lattices,” J. Mult. Valued Log. Soft Comput., vol. 31, no. 4, pp. 287–322, 2018.
[17] S. Rasouli, “Quasicomplemented residuated lattices,” Soft Comput., vol. 24., no. 9, pp. 6591-6602, 2020, doi: 10.1007/S00500-020-04778-Y.
[18] S. Rasouli, “Generalized stone residuated lattices,” Algebra Struct. Their Appl., vol. 8, no. 1, pp. 75-87, 2021, doi: 10.22034/AS.2020.1885.
[19] S. Rasouli and A. Dehghani, “The hull-kernel topology on prime filters in residuated lattices,” Soft Comput., vol. 25, pp. 10519–10541, 2021, doi: 10.1007/S00500-021-05985-X.
[20] S. Rasouli and M. Kondo, “n-normal residuated lattices,” Soft Comput., vol. 24, no. 1, pp. 247–258, 2020, doi: 10.1007/S00500-019-04346-Z.
[21] L.C. Ciungu, “Classes of residuated lattices,” Annals of Universityof Craiova, Math. Comp. Sci. Ser., vol. 33, pp. 189-207, 2006.
[22] P.M. Idziak, “Lattice operations in BCK-algebras,” Math. Japonica, vol. 29, pp. 839-846, 1984.
[23] P. Flondor, G. Georgescu, and A. Iorgulescu, “Pseudo-t-norms and pseudo-BL algebras,” Soft Comput., vol. 5, no. 5, pp. 355-371, 2001, doi: 10.1007/S005000100137.
[24] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated lattices: an algebraic glimpse at substructural logics, Elsevier, vol. 151, pp. 1-509, 2007.
[25] S. Rasouli and B. Davvaz, “An investigation on Boolean prime filters in BL-algebras,” Soft Comput., vol. 19, no. 10, pp. 2743–2750, 2015, doi: 10.1007/S00500-015-1711-8.
[26] S. Rasouli, “Generalized co-annihilators in residuated lattices,” Annals of the University of Craiova, Mathematics and Computer Science Series, vol. 45, no. 2, pp. 1–18, 2018.
[27] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag Heidelberg, Springer, 1999.
[28] P. Jipsen and C. Tsinakis, “A Survey of Residuated Lattices,” in: Mart?nez, J. (eds) Ordered Algebraic Structures, Developments in Mathematics, vol 7, Springer, Boston, MA., 2002, doi: 10.1007/978-1-4757-3627-4_3.
[29] G. Gratzer, Lattice theory, San Francisco: W. H. Freeman and Company, 1979.
[30] B.V. Gasse, G. Deschrijver, C. Cornelis, and E.E. Kerre, “Filters of residuated lattices and triangle algebras,” Inf. Sci., vol. 180, no. 16, pp. 3006-3020, 2010, doi: 10.1016/J.INS.2010.04.010.
[31] S. Rasouli, “The going-up and going-down theorems in residuated lattices,” Soft Comput., vol. 23, no. 17, pp. 7621–7635, 2019, doi: 10.1007/S00500-019-03780-3.
[32] M. Kondo and E. Turunen, “Prime filters on residuated lattices,” in 42nd IEEE International Symposium on Multiple-Valued Logic, ISMVL, Victoria, BC, Canada, 2012, pp. 89-91, doi: 10.1109/ISMVL.2012.40.