A numerical algorithm for determining time-dependent coefficient in a parabolic inverse problem using Legendre multiwavelet base

Document Type : Original Article

Authors

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

In this paper, we introduce Legendre multiwavelet functions and use them as a set of base functions to approximate the solution of a parabolic differential equation with an unknown time-dependent coefficient in an inverse problem. Using the expansion formula of a known function in terms of the Legendre multiwavelet base, we define integral and product operational matrices from a general point of view. With the help of these matrices, we transform the problem into a system of algebraic equations. By solving the obtained system of algebraic equations using the existing optimization algorithms, we provide an approximation for the solution of the problem in the form of its expansion in terms of the Legendre multiwavelet base. In addition to expressing the algorithm of the proposed numerical method, we perform the proposed method on two examples and report its numerical results. We also compare the results of the proposed method with the results reported from other methods.

Keywords


[1] Beylkin G., “On wavelet-based algorithms for solving differential equations,” in Wavelets, pp. 449–466, CRC Press, 2021.
[2] Glowinski R., “Wavelet solution of linear and nonlinear elliptic,” Parabolic and Hyperbolic Problems in One Space Dimension, pp.1–79, 1989.
[3] Goswami J. C., Chan A. K., and Chui C. K., “On solving first-kind integral equations using wavelets on a bounded interval,” IEEE Transactions on antennas and propagation, 43(6): 614–622, 1995.
[4] Dahmen W., Kunoth A., and Urban K., “A wavelet Galerkin method for the Stokes equations,” Computing, 56(3): 259–301, 1996.
[5] Lin E. and Zhou X., “Connection coefficients on an interval and wavelet solutions of Burgers equation,” Journal of computational and applied mathematics, 135(1): 63–78, 2001.
[6] Xu J. -C. and Shann W. -C., “Galerkin-wavelet methods for two-point boundary value problems,” Numerische Mathematik, 63(1): 123–144, 1992.
[7] Alpert B. K., “A class of bases in L2 for the sparse representation of integral operators,” SIAM journal on Mathematical Analysis, 24(1): 246–262, 1993.
[8] Alpert B. K., Beylkin G., Gines D., and Vozovoi L., “Adaptive solution of partial differential equations in multiwavelet bases,” Journal of Computational Physics, 182(1): 149–190, 2002.
[9] Lakestani M., Saray B. N., and Dehghan M., “Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets,” Journal of Computational and Applied Mathematics, 235(11): 3291–3303, 2011.
[10] Shamsi M. and Razzaghi M., “Solution of Hallen’s integral equation using multiwavelets,” Computer Physics Communications, 168(3): 187–197, 2005.
[11] Zhou X., “Legendre multiwavelet Galerkin methods for differential equations,” Journal of applied mathematics and informatics, 32(12): 267–284, 2014.
[12] شیخان م.، عباسی ع.، «راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم‌های هوش محاسباتی»، مجله محاسبات نرم، جلد 6، شماره 1، ص.48-65، 1396.
[13] محمدپور م.، مینایی بیدگلی ب.، پروین ح.، «ارائه یک الگوریتم فرااکتشافی جدید مبتنی بر رفتار پرنده تیهو برای حل مسائل بهینه‍سازی پویا»، مجله محاسبات نرم، جلد 8، شماره 2، ص.38-65، 1398.
[14] خسروی ا.، عبدالمالکی ه.، فیاضی م.، «پیش‌بینی وضعیت تحصیلی متقاضیان پذیرش‌شده دانشگاه، مبتنی بر داده‌های آموزشی و پذیرشی با استفاده از تکنیک‌های داده کاوی»، مجله محاسبات نرم، جلد 9، شماره 2، ص.94-113، 1399.
[15] ویسی ه.، قایدشرف ح.، ابراهیمی م.، «بهبود کارایی الگوریتم‌های یادگیری ماشین در تشخیص بیماری‌های قلبی با بهینه‌سازی داده‌ها و ویژگی‌ها»، مجله محاسبات نرم، جلد 8، شماره 1، ص.70-85، 1398.
[16] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A., Spectral methods: fundamentals in single domains, Springer Science and Business Media, 2007.
[17] Saadatmandi A. and Dehghan M., “Numerical solution of the one-dimensional wave equation with an integral condition,” Numerical Methods for Partial Differential Equations: An International Journal, 23(2): 282–292, 2007.
[18] Abbas Z., Vahdati S., Atan K., and Long N. N., “Legendre multi-wavelets direct method for linear integro-differential equations,” Applied Mathematical Sciences, 3(14): 693–700, 2009.
[19] Khellat F. and Yousefi S. A., “The linear legendre mother wavelets operational matrix of integration and its application,” Journal of the Franklin Institute, 343(2): 181–190, 2006.
[20] Rivlin T. J., An introduction to the approximation of functions, Courier Corporation, 1981.
[21] Ueda M. and Lodha S., Wavelets: An elementary introduction and examples, University of California, Santa Cruz, US, 1995.
[22] Cannon J. R. and Rundell W., “Recovering a time dependent coefficient in a parabolic differential equation,” Journal of Mathematical Analysis and Applications, 160(2): 572–582, 1991.
[23] MacBain J. A. and Bednar J. B., “Existence and uniqueness properties for the one-dimensional magnetotellurics inversion problem,” Journal of mathematical physics, 27(2): 645–649, 1986.
[24] Shamsi M. and Dehghan M., “Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral legendre method,” Numerical Methods for Partial Differential Equations: An International Journal, 23(1): 196–210, 2007.
[25] Thapa N., “On the numerical solution of coefficient identification problem in heat equation,” Applied Mathematical Sciences, 8(122): 6081–6092, 2014.
[26] Dehghan M., “Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement,” Numerical Methods for Partial Differential Equations: An International Journal, 21(3): 611–622, 2005.
[27] Saadatmand A. and Dehghan M., “A method based on the tau approach for the identification of a time-dependent coefficient in the heat equation subject to an extra measurement,” Journal of Vibration and Control, 18(8): 1125–1132, 2012.
[28] Dehghan M., “A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications,” Numerical Methods for Partial Differential Equations: An International Journal, 22(1): 220–257, 2006.