Development of software for simulating temperature distribution inside solid shells using a combination of AR and CFD techniques

Document Type : Original Article

Authors

1 Department of Computer Engineering and IT, University of Qom, Qom, Iran

2 Department of Mechanical Engineering, University of Qom, Qom, Iran

Abstract

Augmented Reality (AR) is a novel technology that has gained popularity in recent years, particularly in mobile devices. It allows virtual objects to coexist with real-world objects in a real environment. Another advantage of AR is its ability to run on personal and mobile devices such as smartphones and tablets. The integration of AR with a numerical simulation method such as Computational Fluid Dynamics (CFD) provides a cognitive, scientific, and efficient tool for both professional and non-professional users to analyze practical problems. Furthermore, the use of CFD with an AR-based system enables engineering analysis and simulation results to be directly obtained on real-world objects, enhancing the understanding and connection between simulation results and the real world. In this paper, a combination of AR and CFD techniques is used to implement an Android software for simulating temperature changes in solids with different materials over time.

Keywords


[1] Li W., Nee A. Y. C., and Ong S. K., “A state-of-the-art review of augmented reality in engineering analysis and simulation,” Multimodal Technologies and Interaction, 1(3): 17, 2017.
[2] Lin J. R., Cao J., Zhang J. P., van Treeck C., and Frisch J., “Visualization of indoor thermal environment on mobile devices based on augmented reality and computational fluid dynamics,” Automation in Construction, 103: 26-40, 2019.
[3] افضلی س.، مؤیدی م.ک.، فتوحی ف.، «توسعه یک مدل رتبه کاسته بدون معادله مبتنی بر الگوهای متفاوت استخراج ویژگی‌ روی مجموعه داده انتقال حرارت دو بعدی پایا»، مجله محاسبات نرم، جلد 10، شماره 1، ص. 16-31، 1400.
[4] Feiner S., MacIntyre B., Hollerer T., and Webster A., “A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment,” Personal Technologies, 1(4): 208-217, 1997.
[5] Hollerer T., Feiner S., Terauchi T., Rashid G., and Hallaway D., “Exploring MARS: developing indoor and outdoor user interfaces to a mobile augmented reality system,” Computers and Graphics, 23(6): 779-785, 1999.
[6] Stedmon A. W., Kalawsky R. S., Hill K., and Cook C. A., “Old theories, new technologies: cumulative clutter effects using augmented reality,” Proceeding of IEEE International Conference on Information Visualization (Cat. No. PR00210), pp. 132-137, 1999. 
[7] Julier S., Lanzagorta M., Baillot Y., Rosenblum L., Feiner S., Hollerer T., and Sestito S., “Information filtering for mobile augmented reality,” In Proceedings of IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), pp. 3-11, 2000.
[8] Piekarski W. and Thomas B. H., “Tinmith-metro: New outdoor techniques for creating city models with an augmented reality wearable computer,” In Proceeding of 15th International Symposium on Wearable Computers, pp. 31-38, 2001.
[9] Reitmayr G. and Schmalstieg D., “Collaborative augmented reality for outdoor navigation and information browsing,” In Proceedings of the 2nd Symposium on Location Based Services and TeleCartography, pp. 53-62, 2003.
[10] Tonnis M., Klein L., and Klinker G., “Perception thresholds for augmented reality navigation schemes in large distances,” In Proceeding of 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 189-190, 2008.
[11] Fukuda T., Yokoi K., Yabuki N., and Motamedi A., “An indoor thermal environment design system for renovation using augmented reality,” Journal of Computational Design and Engineering, 6(2): 179-188, 2019.
[12] Malkawi A. M. and Srinivasan R. S., “A new paradigm for Human-Building Interaction: the use of CFD and Augmented Reality,” Automation in construction, 14(1): 71-84, 2005.
[13] Moreland J., Wang J., Liu Y., Li F., Shen L., Wu B., and Zhou C., “Integration of augmented reality with computational fluid dynamics for power plant training,” In Proceedings of the International Conference on Modeling, Simulation and Visualization Methods (MSV), p. 1, 2013.
[14] Fukuda T., Mori K., and Imaizumi J., “Integration of CFD, VR, AR and BIM for design feedback in a design process-an experimental study,” In Proceeding of 33rd eCAADe Conference, Vienna University of Technology, Vienna, Austria, 2015.
[15] Rabbi I. and Ullah S., “A survey on augmented reality challenges and tracking,” Acta graphica, 24(1-2): 29-46, 2013.
[16] Milgram P., Takemura H., Utsumi A., and Kishino F., “Augmented reality: A class of displays on the reality-virtuality continuum,” Telemanipulator and telepresence technologies, 2351: 282-292, 1995.
[17] Koller D., Klinker G., Rose E., Breen D., Whitaker R., and Tuceryan M., “Automated camera calibration and 3D egomotion estimation for augmented reality applications,” In Proceeding of International Conference on Computer Analysis of Images and Patterns, Springer, Berlin, Heidelberg, pp. 199-206, 1997.
[18] Azuma R. T., “A survey of augmented reality,” Presence: teleoperators and virtual environments, 6(4): 355-385, 1997.
[19] نخعی ف.، ایران‌نژاد م.، محمدنژاد س.، «کاربرد سیستم‌های آنالیز تصویر در فرآیند فلوتاسیون»، مجله محاسبات نرم، جلد 5، شماره 2، ص. 66-83، 1395.
[20] مرادی م.، حسینی م.، مومنی ازندریانی ا. «تشخیص نوع خودرو با استفاده از مدل 3-بعدی»، مجله محاسبات نرم، جلد 4، شماره 1، ص. 2-13، 1394.
[21] Wagner D., Handheld Augmented Reality, PhD dissertation, Graz University of Technology, Institute for Computer Graphics and Vision, 2007.
[22] Moayyedi M. K. and Sabaghzadeghan F., “Development of parametric and time dependent reduced order model for diffusion and convection-diffusion problems based on proper orthogonal decomposition method,” Amirkabir Journal of Mechanical Engineering, 53(7): 8, 2021.