[1] R.K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining and sentiment analysis,” in 3rd Int. Conf. Comput. Sustain. Glob. Dev. (INDIACom), New Delhi, India, 2016, pp. 452-455.
[2] H. Chen and D. Zimbra, “AI and opinion mining,” IEEE Intell. Syst., vol. 25, no. 3, pp. 74-80, 2010, doi: 10.1109/MIS.2010.75.
[3] S. Alimardani and A. Aghaie, “Opinion Mining in Persian Language,” J. Inf. Technol. Manag., vol. 7, no. 2, pp. 345-362, 2015, doi: 10.22059/jitm.2015.53995 [In Persian].
[4] M.Y. Rau and. M.A. Kulkarni, “Polarity shift in opinion mining,” in IEEE Int. Conf. Adv. Electronics Commun. Comput. Technol. (ICAECCT), Pune, India, 2016, pp. 333-337, doi: 10.1109/ICAECCT.2016.7942608.
[5] S.K. Rajan, A.F.S. Devaraj, R. Manickam, E.G. Julie, Y.H. Robinson, and V. Shanmuganathan, “Exploration of sentiment analysis and legitimate artistry for opinion mining,” Multim. Tools Appl., vol. 81, no. 9, pp. 11989-12004, 2022, doi: 10.1007/s11042-020-10480-w.
[6] R. Ganesh, D. Saketh, V.D.V. Sai Kumar, M. Ramesh, “Website Evaluation Using Opinion Mining,” in 3rd Int. Conf. Invent. Res. Comput. Appl. (ICIRCA), Coimbatore, India, 2021, pp. 1499-1506, doi: 10.1109/ICIRCA51532.2021.9544566.
[7] D.S.A. Elminaam, N. Neggaz, I.A.E. Gomaa, F.H. Ismail, and A.A. Elsawy, “ArabicDialects: An Efficient Framework for Arabic Dialects Opinion Mining on Twitter Using Optimized Deep Neural Networks,” IEEE Access, vol. 9, pp. 97079-97099, 2021, doi: 10.1109/ACCESS.2021.3094173.
[8] H. Elzayady, K.M. Badran, and G.I. Salama, “Arabic Opinion Mining Using Combined CNN-LSTM Models,” Int. J. Intell. Syst. Appl., vol. 12, no. 4, 2020, doi: 10.5815/ijisa.2020.04.03.
[9] M. Keyvanpour, Z.K. Zandian, and M. Heidarypanah, “OMLML: a helpful opinion mining method based on lexicon and machine learning in social networks,” Soc. Netw. Anal. Min., vol. 10, no. 1, p. 10, 2020, doi: 10.1007/s13278-019-0622-6.
[10] E. Souza, D Santos, G.H.F.M. Oliveira, A. Silva, and A.L.I. Oliveira, “Swarm optimization clustering methods for opinion mining,” Nat. Comput., vol. 19, no. 3, pp.547-575, 2020, doi: 10.1007/s11047-018-9681-2.
[11] A. Da’u, N. Salim, I. Rabiu, and A. Osman, “Recommendation system exploiting aspect-based opinion mining with deep learning method,” Inf. Sci., vol. 512, pp. 1279-1292, 2020, doi: 10.1016/j.ins.2019.10.038.
[12] S. Akhmedova, E. Semenkin, and V. Stanovov, “Co-operation of biology related algorithms for solving opinion mining problems by using different term weighting schemes,” in 13th Int. Conf. Inf. Control Autom. Robot. (ICINCO), Lisbon, Portugal, 2016, pp. 73-90, doi: 10.1007/978-3-319-55011-4_4.
[13] B.V. Krishna, A.K. Pandey, and A.P.S. Kumar, “Feature based opinion mining and sentiment analysis using fuzzy logic,” in Cognitive Science and Artifcial Intelligence, Singapore, pp. 79-89, Springer, 2018, doi: 10.1007/978-981-10-6698-6_8.
[14] R. Narayan, J.K. Rout, and S.K. Jena, “Review spam detection using opinion mining,” in Prog. Intel. Comput. Techn. Theory Pract. Appl., Springer, Singapore, 2018, pp. 273-279, doi: 10.1007/978-981-10-3376-6_30.
[15] K.L.S. Kumar, J. Desai, and J. Majumdar, “Opinion mining and sentiment analysis on online customer review,” in IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC), Chennai, India, 2016, pp. 1-4, doi: 10.1109/ICCIC.2016.7919584.
[16] S.R. El-Beltagy, T. Khalil, A. Halaby, and M. Hammad, “Combining lexical features and a supervised learning approach for Arabic sentiment analysis,” in Comput. Linguist. Intell. Text Process. 17th Int. Conf. (CICLing), Konya, Turkey, 2018, Part II 17, pp. 307-319, doi: 10.1007/978-3-319-75487-1_24.
[17] M.M. Krishna, B. Duraisamy, and J. Vankara, “Independent component support vector regressive deep learning for sentiment classification,” Meas. Sensors, vol. 26, p. 100678, 2023, doi: 10.1016/j.measen.2023.100678.
[18] M.M. AlyanNezhadi, M. Hosseini, H. Qazanfari, and A. Kamandi, “Content-based image retrieval using support vector machine and texture difference histogram features,” Soft Comput. J., vol. 11, no. 1, pp. 10-21, 2022, doi: 10.22052/scj.2022.246175.1053 [In Persian].
[19] M. Feizi-Derakhshi, Z. Mottaghinia, and M. Asgari-Chenaghlu, “Persian Text Classification Based on Deep Neural Networks,” Soft Comput. J., vol. 11, no. 1, pp. 120-139, 2022, doi: 10.22052/scj.2023.243182.1010 [In Persian].
[20] F. Zare Mehrjardi, M. Yazdian-Dehkordi, and A. Latif, “Evaluating classical machine learning and deep-learning methods in sentiment analysis of Persian telegram message,” Soft Comput. J., vol. 11, no. 1, pp. 88-105, 2022, doi: 10.22052/scj.2023.246553.1077 [In Persian].
[21] T. Shaik, X. Tao, C. Dann, H. Xie., Y. Li, and L. Galligan, “Sentiment analysis and opinion mining on educational data: A survey,” Nat. Lang. Process. J., vol. 2, p. 100003, 2023, doi: 10.1016/j.nlp.2022.100003.
[22] R. Raei and S. Fallahpour, “Support Vector Machines Application in Financial Distress Prediction of Companies Using Financial Ratios,” Account. Audit. Rev., vol. 15, no. 4, pp. 17-34, 2009, dor: 20.1001.1.26458020.1387.15.4.2.6 [In Persian].
[23] K.-S. Shin, T.S. Lee, and H.-J. Kim, “An application of support vector machines in bankruptcy prediction model,” Expert Syst. Appl., vol. 28, no. 1, pp. 127-135, 2005, doi: 10.1016/j.eswa.2004.08.009.
[24] S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46-61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.
[25] A. Mohammadzadeh, M. Masdari, F.S. Gharehchopogh, and A. Jafarian, “An improved grey wolves optimization algorithm for workflow scheduling in cloud computing environment,” J. Soft Comput. Inf. Technol., vol. 8, no. 4, pp. 17-29, 2019 [In Persian].
[26] J. Lever, M. Krzywinski, and N. Altman, “Classification evaluation,” Nat. Methods, vol. 13, pp. 603-604, 2016, doi: 10.1038/nmeth.3945.
[27] G. Xu, Y. Zong, and Z. Yang, Applied data mining, CRC Press, 2013.
[28] D.M.W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” arXiv, CoRR abs/2010.16061, 2020, doi: 10.48550/arXiv.2010.16061.
[29] M. Khodayar and A. Osare, “Intrusion detection in computer networks using hybrid machine learning techniques,”in 9th Int. Symp. Adv. Sci. Technol., Mashhad, Iran, 2014 [In Persian].