The effective length of vertical rods buried in two-layer soil subjected to lightning return strokes based on ANFIS

Document Type : Original Article

Authors

Department of Engineering, Arak University, Arak, Iran.

Abstract

In this paper, an adaptive network fuzzy inference system (ANFIS) based on the Takagi-Sugeno- Kang technique is used for predicting the effective length of vertical rods buried in two-layer soils. The rods are subjected to two typical lightning return stroke currents namely first and subsequent stroke currents. To train the ANFIS approach, a number of input-output pairs are computed from the multi-conductor transmission line method. The inputs are resistivity values of the upper and lower layers, upper layer thickness and the rise time of the lightning current. After the training process is converged, the prediction of effective length is efficiently carried out in such soils. Also, the comparative study with the horizontal electrode buried in two-layer soils shows that the effective length of vertical rods is considerably less than that of the horizontal electrodes which are financially and practically important, whereas in single-layer soil they are different.

Keywords

Main Subjects


[1] Y. Liu, N. Theethayi, and R. Thottappillil, “Investigating the validity of existing definitions and empirical equations of effective length/area of grounding wire/grid for transient studies,” J. Electrostat., vol. 65, no. 5, pp. 329–335, 2007, doi: 10.1016/j.elstat.2006.09.005.
[2] R. Alipio and S. Visacro, “Impulse efficiency of grounding electrodes: Effect of frequencydependent soil parameters,” IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 716–723, 2014, doi: 10.1109/TPWRD.2013.2278817.
[3] S. Visacro, M. B. Guimarães, and L. S. Araujo, “Experimental impulse response of grounding grids,” Electr. Power Syst. Res., vol. 94, pp. 92–98, 2013, doi: 10.1016/j.epsr.2012.04.011.
[4] J. He, Y. Gao, R. Zeng, J. Zou, X. Liang, B. Zhang, J. Lee, and S. Chang, “Effective length of counterpoise wire under lightning current,” IEEE Trans. Power Deliv., vol. 20, no. 2, pp. 1585–1591, 2005, doi: 10.1109/TPWRD.2004.838457.
[5] O. Kherif, S. Chiheb, M. Teguar, A. Mekhaldi, and N. Harid, “Investigation of horizontal ground electrode’s effective length under impulse current,” IEEE Trans. Electromagn. Compat., vol. 61, no. 5, pp. 1515–1523, 2019, doi: 10.1109/TEMC.2018.2864130.
[6] S. Kumar A and K. Manickavasagam, “Transmission line dynamic circuit model for effective length of ground electrode under lightning transients,” IEEE Trans. Electromagn. Compat., vol. 64, no. 2, pp. 543–550, 2022, doi: 10.1109/TEMC.2021.3124679.
[7] S. S. Sajjadi, V. Aghajani, and S. R. Ostadzadeh, “Comprehensive formulae for effective length of multiple grounding electrodes considering different aspects of soils: Simplified multiconductor transmission line-intelligent water drop approach,” Int. J. Numer. Model. Electron. Networks, Devices Fields., vol. 33, no. 4, p. e2721, 2020, doi: 10.1002/jnm.2721.
[8] S. S. Sajjadi and S. R. Ostadzadeh, “Predicting formulae for effective length of counterpoise wires buried in ionized, dispersive and inhomogeneous soils,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 39, no. 6, pp. 1375–1391, 2020, doi: 10.1108/COMPEL-08-2019-0327.
[9] H. Karami, K. Sheshyekani, and F. Rachidi, “Mixed-potential integral equation for full-wave modeling of grounding systems buried in a lossy multilayer stratified ground,” IEEE Trans. Electromagn. Compat., vol. 59, no. 5, pp. 1505–1513, 2017, doi: 10.1109/TEMC.2017.2655497.
[10] H. Karami and K. Sheshyekani, “Harmonic impedance of grounding electrodes buried in a horizontally stratified multilayer ground: A full-wave approach,” IEEE Trans. Electromagn. Compat., vol. 60, no. 4, pp. 899–906, 2018, doi: 10.1109/TEMC.2017.2759259.
[11] H. Zamani and K. Sheshyekani, “Method of line for modeling of grounding electrodes buried in stratified multilayer soil,” IEEE Trans. Electromagn. Compat., vol. 64, no. 6, pp. 2131–2140, 2022, doi: 10.1109/TEMC.2022.3210469.
[12] J. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541.
[13] H. Abbasi, M. Shamsi, and A. Rasuli Kenari, “Approaches of user activity detection and a new fuzzy logic-based method to determine the risk amount of user unusual activity in the smart home,” Soft Comput. J., vol. 9, no. 2, pp. 2–13, 2021, doi: 10.22052/scj.2021.242812.0 [In Persian].
[14] H. Moradi-Farahani, J. Asgari, and M. Zekri, “A surveying on type-2 fuzzy logic: Its genesis and its application,” Soft Comput. J., vol. 2, no. 1, pp. 22–43, 2013, dor: 20.1001.1.23223707.1392.2.1.58.2 [In Persian].
[15] R. Akhoondi and R. Hosseini, “A novel fuzzygenetic differential evolutionary algorithm for optimization of a fuzzy expert systems applied to heart disease prediction,” Soft Comput. J., vol. 6, no. 2, pp. 32–47, 2018, dor: 20.1001.1.23223707.1396.6.2.3.7 [In Persian].
[16] K. Guney and N. Sarikaya, “Adaptive neurofuzzy inference system for computing the resonant frequency of electrically thin and thick rectangular microstrip antennas,” Int. J. Electron., vol. 94, no. 9, pp. 833–844, 2007, doi: 10.1080/00207210701526317.
[17] Y. Harkouss, “Accurate modeling and optimization of microwave circuits and devices using adaptive neuro-fuzzy inference system,” Int. J. Microwave Wireless Technol., vol. 3, no. 6, pp. 637-645, 2011, doi: 10.1017/S1759078711000651.
[18] V. Aghajani, S. S. Sajjadi, and S. R. Ostadzadeh, “Design of grounding vertical rods buried in complex soils using radial basis functions,” J. Commun. Eng., vol. 7, no. 2, pp. 30–40, 2018, doi: 10.22070/jce.2018.3371.1090.
[19] K. Guney and N. Sarikaya, “Comparison of mamdani and sugeno fuzzy inference system models for resonant frequency calculation of rectangular microstrip antennas,” Prog. Electromagn. Res. B, vol. 12, pp. 81–104, 2009, doi: 10.2528/PIERB08121302.
[20] A. Jardines, J. Guardado, J. Torres, J. Chavez, and M. Hernandez, “A multiconductor transmission line model for grounding grids,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 24–33, 2014, doi: 10.1016/j.ijepes.2014.02.022.
[21] S. R. Ostadzadeh, “Validity of improved mtl for effective length of counterpoise wires under low and high-valued lightning currents,” Adv. Electromagn., vol. 9, no. 1, pp. 70—-77, 2020, doi: 10.7716/aem.v9i1.1383.
[22] L. Grcev, “Impulse efficiency of ground electrodes,” IEEE Trans. Power Deliv., vol. 24, no. 1, pp. 441–451, 2009, doi: 10.1109/TPWRD.2008.923396.
[23] M. Akbari, K. Sheshyekani, and M. R. Alemi, “The effect of frequency dependence of soil electrical parameters on the lightning performance of grounding systems,” IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp. 739–746, 2013, doi: 10.1109/TEMC.2012.2222416.
[24] O. E. Gouda, A. Z. E. D. Mohamed, M. M. Al-Harthi, S. Y. Omar, and S. S. M. Ghoneim, “Performance of grounding electrodes under lightning strokes in uniform and two-layer soils considering soil ionization,” IEEE Access, vol. 10, pp. 76 855–76 869, 2022, doi: 10.1109/ACCESS.2022.3192394.
[25] D. A. Tsiamitros, G. K. Papagiannis, and P. S. Dokopoulos, “Homogenous earth approximation of two-layer earth structures: An equivalent resistivity approach,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 658–666, 2007, doi: 10.1109/TPWRD.2006.881465.