[1] P. Eykhoff, “Identification theory: Practical implications and limitations,” Measurement, vol. 2, no. 2, pp. 75-85, 1984, doi: 10.1016/0263-2241(84)90036-8.
[2] L. Ljung, “System Identification,” Signal Anal. Predict., pp. 163-173, 1998, doi: 10.1007/978-1-4612-1768-8_11.
[3] A. Ghanbari Sorkhi, H. Hassanpour, and M. Fateh, “Regions Proposal Selection in Objects Detection and Recogntion Systems,” Soft Comput. J., vol. 5, no. 2, pp. 34-47, 2016, dor: 20.1001.1.23223707.1395.5.2.4.1 [In Persian]
[4] J.J. Vyas, B. Gopalsamy, and H. Joshi, “System Identification,” SpringerBriefs Appl. Sci. Technol., pp. 47-51, 2018, doi: 10.1007/978-981-13-2547-2_4.
[5] M. Karari, System Identification, 4th ed., Amirkabir University of Technology Press, 2013 [In Persian].
[6] M. Mohagheghi, “An approach to accelerate policy iteration for probabilistic model checking of Markov decision processes using machine learning,” Soft Comput. J., vol. 11, no. 2, pp. 134-148, 2023, doi: 10.22052/scj.2023.243360.1029 [In Persian]
[7] S. Kalantari and M.J. Abdollahifard, “Optimization-based multiple-point geostatistics: A sparse way,” Comput. Geosci., vol. 95, pp. 85-98, 2016, doi: 10.1016/j.cageo.2016.07.006.
[8] S. Kalantari, A. Madadi, M. Ramezani, and A. Hajati, “Controlling the Ground Particle Size and Ball Mill Load Based on Acoustic Signal, Quantum Computation Basis, and Least Squares Regression, Case Study: Lakan Lead-Zinc Processing Plant,” Int. J. Ind. Electron. Control Optim., vol. 6, no. 3, pp. 205-218, Sep. 2023, doi: 10.22111/ieco.2023.45981.1488.
[9] S. Kalantari, A. Madadi, and M. Ramezani, “Reconstruction of geological images based on an adaptive spatial domain filter: an example to introduce quantum computation to geosciences,” Int. J. Min. Geo-Eng., vol. 57, no. 2, pp. 183-194, 2023, doi: 10.22059/IJMGE.2023.352048.595007.
[10] M. Khosravi and M. Zekri, “A review of quantum neural networks,” Soft Comput. J., vol. 1, no. 1, pp. 46-55, 2012, dor: 20.1001.1.23223707.1391.1.1.113.0 [In Persian].
[11] Y. Liu and S. Zhang, “Fast quantum algorithms for least squares regression and statistic leverage scores,” Theor. Comput. Sci., vol. 657, pp. 38-47, 2017, doi: 10.1016/j.tcs.2016.05.044.
[12] A.W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, 2009, doi: 10.1103/physrevlett.103.150502.
[13] I. Kerenidis and A. Prakash, “Quantum Recommendation Systems,” 2016, arXiv:1603.08675, [Online]. Available: https://arxiv.org/abs/1603.08675.
[14] K. Li et al., “Quantum Linear System Algorithm for General Matrices in System Identification,” Entropy, vol. 24, no. 7, p. 893, 2022, doi: 10.3390/e24070893.
[15] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information. Cambridge, U.K.: Cambridge Univ. Press, 2010, doi: 10.1017/CBO9780511976667.
[16] S. Kalantari, M. Ramezani, and A. Madadi, “Introducing a New Hybrid Adaptive Local Optimal Low Rank Approximation Method for Denoising Images,” Int. J. Ind. Electron. Control Optim., vol. 3, no. 2, pp. 173-185, 2020, doi: 10.22111/ieco.2019.31245.1199.
[17] S. Kalantari, M. Ramezani, A. Madadi, and V.V. Estrela, “Reduction AWGN from Digital Images Using a New Local Optimal Low-Rank Approximation Method,” Smart Innov. Syst. Technol., 2020, doi: 10.1007/978-3-030-57548-9_5.
[18] G.H. Golub, A. Hoffman, and G.W. Stewart, “A generalization of the Eckart-Young-Mirsky matrix approximation theorem,” Linear Algebra Appl., vol. 88-89, pp. 317-327, 1987, doi: 10.1016/0024-3795(87)90114-5.
[19] S.A. Goreinov, I. Oseledets, D. Savostyanov, E.E. Tyrtyshnikov, and N.L. Zamarashkin, “How to Find a Good Submatrix,” Matrix Methods Theory Alg. Appl., pp. 247-256, 2010, doi: 10.1142/9789812836021_0015.
[20] N.K. Kumar and J. Schneider, “Literature survey on low rank approximation of matrices,” Linear Multilinear Algebra, vol. 65, no. 11, pp. 2212-2244, 2016, doi: 10.1080/03081087.2016.1267104.
[21] L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently integrable probability distributions,” 2002, arXiv:quant-ph/0208112, [Online]. Available: https://arxiv.org/abs/quant-ph/0208112
[22] L. Wossnig, Z. Zhao, and A. Prakash, “Quantum Linear System Algorithm for Dense Matrices,” Phys. Rev. Lett., vol. 120, no. 5, 2018, doi: 10.1103/physrevlett.120.050502.
[23] Y. Cao, A. Daskin, S. Frankel, and S. Kais, “Quantum Circuit Design for Solving Linear Systems of Equations,” Mol. Phys., vol. 110, no. 15-16, pp. 1675-1680, 2012, doi: 10.1080/00268976.2012.668289.