[1] W. Zhao, W. Jiang, and X. Qiu, “Deep learning for COVID-19 detection based on CT images,” Sci. Rep., vol.11, p. 14353, 2021, doi: 10.1038/s41598-021-93832-2.
[2] V. Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, and N. Mehendale, “Diagnosis of COVID-19 using CT scan images and deep learning techniques,” Emerg. Radiol., vol. 28, no. 3, pp. 497-505, 2021, doi: 10.1007/s10140-020-01886-y.
[3] H. Kaheel, A. Hussein, and A. Chehab, “AI-Based Image Processing for COVID-19 Detection in Chest CT Scan Images,” Front. Comms. Net, vol. 2, p. 645040, 2021, doi: 10.3389/frcmn.2021.645040.
[4] N. Safdarian and N. Jafarnia Dabanloo, “Detection and classification of COVID-19 by lungs computed tomography scan image processing using intelligence algorithm,” J. Med. Signals Sens., vol. 11, no.4, pp. 274-284, 2021, doi: 10.4103/jmss.JMSS_55_20.
[5] Silva P., E. Luz, G. Silva, G. Moreira, R. Silva, D. Lucio, and D. Menotti, “COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis,” Informatics Med. Unlocked, vol. 20, p. 100427, 2020, doi: 10.1016/j.imu.2020.100427.
[6] S. Tang, C. Wang, J. Nie, N. Kumar, Y. Zhang, Z. Xiong, and A. Barnawi, “EDL-COVID: ensemble deep learning for COVID-19 case detection from chest x-ray images,” IEEE Trans. Ind. Informatics, vol. 17, no. 9, pp. 6539-6549, 2021, doi: 10.1109/TII.2021.3057683.
[7] M. Polsinelli, L. Cinque, and G. Placidi, “A light CNN for detecting COVID-19 from CT scans of the chest,” Pattern Recognit. Lett., vol. 140, pp. 95-100, 2020, doi: 10.1016/j.patrec.2020.10.001.
[8] E. Soares, P. Angelov, S. Biaso, M.H. Froes, and D.K. Abe, “SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification,” MedRxiv, pp. 1-8, 2020, doi: 10.1101/2020.04.24.20078584.
[9] G. Celik, “Detection of Covid-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network,” Appl. Soft Comput., vol. 133, p. 109906, 2023, doi: 10.1016/j.asoc.2022.109906.
[10] K. Gupta and V. Bajaj, “Deep learning models-based CT-scan image classification for automated screening of COVID-19,” Biomed. Signal Process. Control, vol. 80, p. 104268, 2023, doi: 10.1016/j.bspc.2022.104268.
[11] D. Suganya and R. Kalpana, “Automated Detection of Covid-19 Waves with Computerized Tomography Scan Using Deep Learning,” in S. Awasthi, G. Sanyal, C.M. Travieso-Gonzalez, P. Kumar Srivastava, D.K. Singh, and R. Kant, (eds) Sustainable Computing, Springer, Cham, 2023, pp. 49-67, doi: 10.1007/978-3-031-13577-4_3.
[12] H. Allioui, Y. Mourdi, and M. Sadgal, “Strong semantic segmentation for Covid-19 detection: Evaluating the use of deep learning models as a performant tool in radiography,” Radiography, vol. 29, no. 1, pp. 109-118, 2023, doi: 10.1016/j.radi.2022.10.010.
[13] I. Ahmed, A. Chehri, and G. Jeon, “A Sustainable Deep Learning-Based Framework for Automated Segmentation of COVID-19 Infected Regions: Using U-Net with an Attention Mechanism and Boundary Loss Function,” Electronics, vol. 11, no. 15, p. 2296, 2022, doi: 10.3390/electronics11152296.
[14] D. Yang, C. Martinez, L. Visuna, H. Khandhar, C. Bhatt, and J. Carretero, “Detection and analysis of COVID-19 in medical images using deep learning techniques,” Sci. Rep., vol. 11, no. 1, p. 19638, 2021, doi: 10.1038/s41598-021-99015-3.
[15] E. Jangam, A.A.D. Barreto, and C.S.R. Annavarapu, “Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking,” Appl. Intell., vol. 52, no. 2, pp. 2243-2259, 2022, doi: 10.1007/s10489-021-02393-4.
[16] T. Choudhary, S. Gujar, A. Goswami, V. Mishra, and T. Badal, “Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification,” Appl. Intell., vol, 53, no. 6, pp. 7201-7215, 2023, doi: 10.1007/s10489-022-03893-7.
[17] S.V. Kogilavani, et al., “COVID-19 detection based on lung CT scan using deep learning techniques,” Computat. Math. Methods Med., vol. 2022, p. 7672196, 2022, doi: 10.1155/2022/7672196.
[18] V.K. Singh and M.H. Kolekar, “Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform,” Multimed. Tools Appl., vol. 81, no. 1, pp. 3-30, 2022, doi: 10.1007/s11042-021-11158-7.
[19] S. Serte and H. Demirel, “Deep learning for diagnosis of COVID-19 using 3D CT scans,” Comput. Biol. Med., vol. 132, p. 104306, 2021, doi: 10.1016/j.compbiomed.2021.104306.
[20] A. Akrami and M. Parsamanesh, “Investigation of a mathematical fuzzy epidemic model for the spread of coronavirus in a population,” Soft Comput. J., vol. 11, no. 1, pp. 2-9, 2022, doi: 10.22052/scj.2022.246053.1045 [In Persian].
[21] A. Yadollahi and H. Sabaghian-Bidgoli, “A simulation model for the propagation of Covid-19 virus based on the discrete-time Markov chain,” Soft Comput. J., vol. 11, no. 2, pp. 88-103, 2023, doi: 10.22052/scj.2023.246527.1076 [In Persian].
[22] M. Mousavi, S. Hosseini, and M.R. Omidi, “Improved deep neural network algorithm for COVID-19 detection in the Internet of Things,” Soft Comput. J., vol. 12, no. 2, pp. 54-71, 2024, doi: 10.22052/scj.2023.248686.1117 [In Persian].
[23] K.F. Haque and A. Abdelgawad, “A deep learning approach to detect COVID-19 patients from chest X-ray images,” AI, vol. 1, no. 3, p. 27, 2020, doi: 10.3390/ai1030027.
[24] J. Zhao, Y. Zhang, X. He, and P. Xie, “Covid-ct-dataset: a ct scan dataset about covid-19,” CoRR abs/2003.13865, 2020.
[25] A. Demir, F. Yilmaz, and O. Kose, “Early detection of skin cancer using deep learning architectures: resnet-101 and inception-v3,” in Med. Technol. Cong. (TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4, doi: 10.1109/TIPTEKNO47231.2019.8972045.
[26] I.Z. Mukti and D. Biswas, “Transfer Learning Based Plant Diseases Detection Using ResNet50,” in 4th Int. Conf. Electr. Inform. Commun. Technol. (EICT), Khulna, Bangladesh, 2019, pp. 1-6, doi: 10.1109/EICT48899.2019.9068805.
[27] A. Vulli, et al., “Fine-tuned DenseNet169 for breast cancer metastasis prediction using FastAI and 1-cycle policy,” Sensors, vol. 22, no. 8, p. 2988, 2022, doi: 10.3390/s22082988.
[28] A.M. Javid, S. Das, M. Skoglund, and S. Chatterjee, “A ReLU Dense Layer to Improve the Performance of Neural Networks,” in IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Toronto, ON, Canada, 2021, pp. 2810-2814, doi: 10.1109/ICASSP39728.2021.9414269.