[1] C. Baier, J.P. Katoen, Principles of model checking, MIT Press, ISBN 978-0-262-02649-9, pp. 1-975, 2008.
[2] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated Verification Techniques for Probabilistic Systems,” in Formal Methods for Eternal Networked Software Systems, vol. 6659, Springer, Berlin, Heidelberg, 2011, doi: 10.1007/978-3-642-21455-4_3.
[3] J.-P. Katoen, “The Probabilistic Model Checking Landscape,” in 31st Ann. ACM/IEEE Symp. Logic Comput. Sci. (LICS), New York, NY, USA, 2016, pp. 1-15.
[4] C. Hensel, S. Junges, J.P. Katoen, T. Quatmann, and M. Volk, “The probabilistic model checker Storm,” Int. J. Softw. Tools Technol. Transf, vol. 24, no. 4, pp. 589-610, 2022, doi: 10.1007/s10009-021-00633-z.
[5] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of Probabilistic Real-Time Systems,” in Computer Aided Verification, vol. 6806, Springer, Berlin, Heidelberg, 2011, doi: 10.1007/978-3-642-22110-1_47.
[6] T.P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, and M. Steinmetz, “Deep Statistical Model Checking,” in Formal Tech. Distributed Obj. Comp. Syst. (FORTE), vol. 12136, Springer, Cham., 2020, doi: 10.1007/978-3-030-50086-3_6.
[7] C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich, “Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes,” in Comput. Aided Verif. (CAV), vol. 10426, Springer, Cham., 2017, doi: 10.1007/978-3-319-63387-9_8.
[8] C. Baier, P.R. D’Argenio, and H. Hermanns, “On the probabilistic bisimulation spectrum with silent moves,” Acta Informatica, vol. 57, no. 3-5, pp. 465-512, 2020, doi: 10.1007/s00236-020-00379-2.
[9] T. Brazdil, C. Krishnendu, C. Martin, F. Vojtech, J. Kret?nsky, M. Kwiatkowska, D. Parker, and M. Ujma, “Verification of Markov decision processes using learning algorithms,” in 12th Int. Symp. Autom. Technol. Verif. Anal. (ATVA), Sydney, NSW, Australia, 2014, pp. 98-114, doi: 10.1007/978-3-319-11936-6_8.
[10] L. Gui, J. Sun, S. Song, Y. Liu, and J.S. Dong, “SCC-Based Improved Reachability Analysis for Markov Decision Processes,” in Formal Methods Softw. Eng. (ICFEM), vol. 8829, Springer, Cham., 2014, doi: 10.1007/978-3-319-11737-9_12.
[11] S. Najafi and S. Noferesti, “Determining dynamic time quantum in round-robin scheduling algorithm using machine learning,” Soft Comput. J., vol. 10, no. 2, pp. 32-43, 2022, doi: 10.22052/scj.2022.243181.1002 [In Persian].
[12] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].
[13] R. Bouchekir and M.C. Boukala, “Toward Implicit Learning for the Compositional Verification of Markov Decision Processes,” in Verif. Eval. Comput. Commun. Syst. (VECoS), vol. 11181, Springer, Cham., 2018, doi: 10.1007/978-3-030-00359-3_13.
[14] S. Oleksandr and C.-G. Lee, “Accelerated modified policy iteration algorithms for Markov decision processes,” Math. Methods Oper. Res., vol. 78, no. 1, pp. 61-76, 2013, doi: 10.1007/s00186-013-0432-y.
[15] A. Rataj and B. Wona-Szczeniak, “Extrapolation of an Optimal Policy using Statistical Probabilistic Model Checking,” Fundam. Informaticae, vol. 157, no. 4, pp. 443-461, 2018, doi: 10.3233/FI-2018-1637.
[16] M. Mohagheghi and K. Salehi, “Machine Learning and Disk-based Methods for Qualitative Verification of Markov Decision Processes,” in Proc. 16th Int. Conf. Edu. Res. Ind. Appl. Integr. Harmon. Knowl. Transfer, vol. II, Kharkiv, Ukraine, 2020, pp. 74-88.
[17] M. Mohagheghi, J. Karimpour, and A. Isazadeh, “Improving Modified Policy Iteration for Probabilistic Model Checking,” Comput. Sci., vol. 23, no. 1, 2022, doi: 10.7494/csci.2022.23.1.4139.
[18] M. Mohagheghi, J. Karimpour, and A. Isazadeh, “Prioritizing methods to accelerate probabilistic model checking of discrete-time Markov models,” Comput. J., vol. 63, no. 1, pp. 105-122, 2020, doi: 10.1093/comjnl/bxz001.
[19] J. Karimpour, A. Isazadeh, M. Mohagheghi, and K. Salehi, “Improved Iterative Methods for Verifying Markov Decision Processes,” in Fundam. Softw. Eng. (FSEN), vol. 9392, Springer, Cham., 2015, doi: 10.1007/978-3-319-24644-4_14.
[20] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quantitative verification for Markov decision processes,” in IEEE/IFIP 41st Int. Conf. Dependable Syst. Networks (DSN), Hong Kong, China, 2011, pp. 359-370, doi: 10.1109/DSN.2011.5958249.
[21] A. Hartmanns, M. Klauck, D. Parker, T. Quatmann, and E. Ruijters, “The Quantitative Verification Benchmark Set,” in Tools Algorithms Constr. Anal. Syst. (TACAS), vol. 11427, Springer, Cham., 2019, doi: 10.1007/978-3-030-17462-0_20.
[22] F. Ciesinski, C. Baier, M. Grober, and J. Klein, “Reduction Techniques for Model Checking Markov Decision Processes,” in 5th Int. Conf. Quant. Eval. Syst., Saint-Malo, France, 2008, pp. 45-54, doi: 10.1109/QEST.2008.45.
[23] T. Salehi, M. Maadani, and M, Mahdavi, “Delay reduction based on Markov decision process in inter-vehicle wireless networks,” in 4th Int. Conf. Modern Stud. Comput. Sci. Inf. Technol., Mashhad, Iran, 2017 [In Persian].
[24] R. Sadeghian, “Determining the equilibrium solution in two-player dynamic discrete markovian games with transition probabilities influenced by competitor strategies,” Soft Comput. J., vol. 11, no. 1, pp. 48-59, 2022, doi: 10.22052/scj.2022.242848.0 [In Persian].