[1] D. Selvamuthu, V. Kumar, and A. Mishra, “Indian stock market prediction using artificial neural networks on tick data,” Financ. Innov., vol. 5, p. 16, 2019, doi: 10.1186/s40854-019-0131-7.
[2] J. Qiu, B. Wang, and C. Zhou, “Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism,” PLOS ONE, vol. 15, no. 1, 2020, p. e0227222, doi: 10.1371/journal.pone.0227222.
[3] P. Yu and X. Yan, “Stock Price Prediction Based on Deep Neural Networks,” Neural Comput. Appl., vol. 32, no. 6, pp. 1609-1628, 2020, doi: 10.1007/s00521-019-04212-x.
[4] G. Ding and L. Qin. “Study on the Prediction of Stock Price Based on the Associated Network Model of LSTM,” Int. J. Mach. Learn. Cybern., vol. 11, no. 6, pp. 1307-1317, 2020, doi: 10.1007/s13042-019-01041-1.
[5] T. Kim and H.Y. Kim, “Forecasting Stock Prices with a Feature Fusion LSTM-CNN Model Using Different Representations of the Same Data,” PLOS ONE, vol. 14, no. 2, 2019, p. e0212320, doi: 10.1371/journal.pone.0212320.
[6] P. Meesad and R. I. Rasel, “Predicting stock market price using support vector regression,” in Int. Conf. Inf. Electron. Vision (ICIEV), Dhaka, Bangladesh, 2013, pp. 1-6, doi: 10.1109/ICIEV.2013.6572570.
[7] M. Obthong, N. Tantisantiwong, W. Jeamwatthanachai, and G.B. Wills, “A Survey on Machine Learning for Stock Price Prediction: Algorithms and Techniques,” in Proc. 2nd Int. Conf. Fin. Econ. Manag. IT Bus. (FEMIB), Prague, Czech Republic, 2020, pp. 63-71, doi: 10.5220/0009340700630071.
[8] J. Pan, Y. Zhuang, and S. Fong, “The Impact of Data Normalization on Stock Market Prediction: Using SVM and Technical Indicators,” in Proc. 2nd Int. Conf. Soft Comput. Data Sci. (SCDS), Kuala Lumpur, Malaysia, 2016, pp. 72-88, doi: 10.1007/978-981-10-2777-2_7.
[9] P. Ghosh, A. Neufeld, and J.K. Sahoo, “Forecasting Directional Movements of Stock Prices for Intraday Trading Using LSTM and Random Forests,” Fin. Res. Letters, vol. 46, p. 102280, 2022, doi: 10.1016/j.frl.2021.102280.
[10] J. Zhang, L. Li, and W. Chen, “Predicting Stock Price Using Two-Stage Machine Learning Techniques,” Comput. Econ., vol. 57, pp. 1237–1261, 2021, doi: 10.1007/s10614-020-10013-5.
[11] B.B. Nair, N.M. Dharini, and V.P. Mohandas, “A Stock Market Trend Prediction System Using a Hybrid Decision Tree-Neuro-Fuzzy System,” in Int. Conf. Adv. Recent Technol. Commun. Comput., Kottayam, India, 2010, pp. 381-385, doi: 10.1109/ARTCom.2010.75.
[12] S.S. Panigrahi and J.K. Mantri, “Epsilon-SVR and decision tree for stock market forecasting,” in Int. Conf. Green Comput. Internet Things (ICGCIoT), Greater Noida, India, 2015, pp. 761-766, doi: 10.1109/ICGCIoT.2015.7380565.
[13] D. Enke, M. Grauer, and N. Mehdiyev, “Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks,” in Proc. Complex Adapt. Syst. Conf., Chicago, Illinois, USA, 2011, pp. 201-206, doi: 10.1016/j.procs.2011.08.038.
[14] Y.E. Cakra and B.D. Trisedya, “Stock price prediction using linear regression based on sentiment analysis,” in Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS), Depok, Indonesia, 2015, pp. 147-154, doi: 10.1109/ICACSIS.2015.7415179.
[15] B. Panwar, G. Dhuriya, P. Johri, S. Singh Yadav, and N. Gaur, “Stock Market Prediction Using Linear Regression and SVM,” in Int. Conf. Adv. Comput. Innov. Technol. Eng. (ICACITE), Greater Noida, India, 2021, pp. 629-631, doi: 10.1109/ICACITE51222.2021.9404733.
[16] A. Izzah, Y.A. Sari, R. Widyastuti, and T. A. Cinderatama, “Mobile app for stock prediction using Improved Multiple Linear Regression,” in Int. Conf. Sustain. Inf. Eng. Technol. (SIET), Malang, Indonesia, 2017, pp. 150-154, doi: 10.1109/SIET.2017.8304126.
[17] D. Enke and N. Mehdiyev, “Stock Market Prediction Using a Combination of Stepwise Regression Analysis, Differential Evolution-Based Fuzzy Clustering, and a Fuzzy Inference Neural Network,” Intell. Autom. Soft Comput., vol. 19, no. 4, pp. 636-48, 2013, doi: 10.1080/10798587.2013.839287.
[18] W. Khan, M.A. Ghazanfar, M.A. Azam, A. Karami, K.H. Alyoubi, and A.S. Alfakeeh, “Stock Market Prediction Using Machine Learning Classifiers and Social Media, News,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 7, pp. 3433-3456, 2022, doi: 10.1007/s12652-020-01839-w.
[19] S. Mehtab, J. Sen, and A. Dutta, “Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models,” in Machine Learning and Metaheuristics Algorithms, and Applications. (SoMMA), Commun. Comput. Inf. Sci., vol 1366, Springer, Singapore, 2021, doi: 10.1007/978-981-16-0419-5_8.
[20] M. Vijh, D. Chandola, V.A. Tikkiwal, and A. Kumar, “Stock Closing Price Prediction Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 167, pp. 599-606, 2020, doi: 10.1016/j.procs.2020.03.326.
[21] W. Chen, H. Zhang, M.K. Mehlawat, and L. Jia, “Mean–Variance Portfolio Optimization Using Machine Learning-Based Stock Price Prediction,” Appl. Soft Comput., vol. 100, p. 106943, 2021, doi: 10.1016/j.asoc.2020.106943.
[22] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques,” Expert Syst. Appl., vol. 42, no. 1, pp. 259-268, 2015, doi: 10.1016/j.eswa.2014.07.040.
[23] X. Zhang, Y. Hu, K. Xie, S. Wang, E.W.T. Ngai, and M. Liu, “A Causal Feature Selection Algorithm for Stock Prediction Modeling,” Neurocomputing, vol. 142, pp. 48-59, 2014, doi: 10.1016/j.neucom.2014.01.057.
[24] M. Gocken, M. Ozcalici, A. Boru, and A.T. Dosdogru, “Stock Price Prediction Using Hybrid Soft Computing Models Incorporating Parameter Tuning and Input Variable Selection,” Neural Comput. Appl., vol. 31, no. 2, pp. 577-592, 2019, doi: 10.1007/s00521-017-3089-2.
[25] M. Wen, P. Li, L. Zhang, and Y. Chen, “Stock Market Trend Prediction Using High-Order Information of Time Series,” IEEE Access, vol. 7, pp. 28299-28308, 2019, doi: 10.1109/access.2019.2901842.
[26] R.K. Nayak, et al., “Indian Stock Market Prediction Based on Rough Set and Support Vector Machine Approach,” in Intell. Cloud Comput. Smart Innov. Syst. Technol., vol 153, Springer, Singapore, 2021, doi: 10.1007/978-981-15-6202-0_35.
[27] Y. Peng, P.H.M. Albuquerque, H. Kimura, and C.A.P.B. Saavedra, “Feature Selection and Deep Neural Networks for Stock Price Direction Forecasting Using Technical Analysis Indicators,” Mach. Learn. Appl., vol. 5, p. 100060, 2021, doi: 10.1016/j.mlwa.2021.100060.
[28] X. Yuan, J. Yuan, T. Jiang, and Q.U. Ain, “Integrated Long-Term Stock Selection Models Based on Feature Selection and Machine Learning Algorithms for China Stock Market,” IEEE Access, vol. 8, pp. 22672–22685, 2020, doi: 10.1109/access.2020.2969293.
[29] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].
[30] A.A.A. Mahdavi and E. Mahdipour, “Prediction of couple relationship during the Covid-19 period using correlation-based feature selection and machine learning,” Soft Comput. J., vol. 10, no. 2, pp. 56-71, 2022, doi: 10.22052/scj.2022.243472.1040 [In Persian].
[31] M. Bigdeli, “Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine,” Soft Comput. J., vol. 9, no. 1, pp. 2-13, 2020, doi: 10.22052/scj.2021.111448 [In Persian].
[32] X.-S. Yang and S. Deb, “Cuckoo Search: Recent Advances and Applications,” Neural Comput. Appl., vol. 24, no. 1, pp. 169-174, 2014, doi: 10.1007/s00521-013-1367-1.
[33] L.A.M. Pereira, “A Binary Cuckoo Search and Its Application for Feature Selection,” in Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence, vol 516, Springer, Cham, 2014, doi: 10.1007/978-3-319-02141-6_7.