[1] J. Yang, A.-O. Purevjav, and S. Li, “The marginal cost of traffic congestion and road pricing: evidence from a natural experiment in Beijing,” American Econ. J. Econ. Policy, vol. 12, no. 1, pp. 418-453, 2020, doi: 10.1257/pol.20170195.
[2] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intel. Mag., vol. 1, no. 4, pp. 28-39, 2006, doi: 10.1109/ci-m.2006.248054.
[3] I. Karaoglan, F. Altiparmak, I. Kara, and B. Dengiz, “The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach,” Omega, vol. 40, no. 4, pp. 465-477, 2012, doi: 10.1016/j.omega.2011.09.002.
[4] S. Doostali and M. Khalily-Dermany, “A multi-hop PSO based localization algorithm for wireless sensor networks,” Soft Comput. J., vol. 8, no. 1, pp. 58-69, 2019, doi: 10.22052/8.1.58 [In Persian].
[5] R. Ghasemi, H.R. Mohammadi, and S.A. Taher, “Frequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm,” Soft Comput. J., vol. 6, no. 2, pp. 18-31, 2018, dor: 20.1001.1.23223707.1396.6.2.2.6 [In Persian].
[6] C. Wu, S. Zhou, and L. Xiao, “Dynamic path planning based on improved ant colony algorithm in traffic congestion,” IEEE Access, vol. 8, pp. 180773-180783, 2020, doi: 10.1109/access.2020.3028467.
[7] H.R. Mohammadi and A. Akhavan, “Performance Comparison of HSA, ICA and PSO Algorithms for Selective Harmonic Elimination in Cascaded Multilevel Inverter with Variable DC Sources,” Soft Comput. J., vol. 3, no. 2, pp. 20-30, 2015, dor: 20.1001.1.23223707.1393.3.2.55.8 [In Persian].
[8] V. Chvatal, W. Cook, G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, “Solution of a Large-Scale Traveling-Salesman Problem,” in M. Junger, et al. 50 Years of Integer Programming 1958-2008, Springer, Berlin, Heidelberg, 2010, doi: 10.1007/978-3-540-68279-0_1.
[9] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by ant colonies,” in Proc. European Conf. Artif. Life (ECAL91), Paris, France, 1991, pp. 134-142.
[10] G. Shang, J. Xin-zi, T. Kezong, and Y. Jingyu, “Hybrid Algorithm Combining Ant Colony Optimization Algorithm with Particle Swarm Optimization,” in Chinese Control Conf., Harbin, China, 2006, pp. 1428-1432, doi: 10.1109/CHICC.2006.280708.
[11] C.-x. Shi, B. Ying-yong, L. Zi-guang, and T. Jun, “Solving path planning problem by an aco-pso hybrid algorithm,” in Int. Conf. Intell. Syst. Knowl. Eng., Atlantis Press, 2007, pp. 1-4, doi: 10.2991/iske.2007.91.
[12] D. Pal, P. Verma, D. Gautam, and P. Indait, “Improved optimization technique using hybrid ACO-PSO,” in 2nd Int. Conf. Next Gener. Comput. Technol. (NGCT), Dehradun, India, 2016, pp. 277-282, doi: 10.1109/NGCT.2016.7877428.
[13] A.J. Ouyang and Y.Q. Zhou, “An improved PSO-ACO algorithm for solving large-scale TSP,” Adv. Mater. Res., vol. 143-144, pp. 1154-1158, 2010, doi: 10.4028/www.scientific.net/amr.143-144.1154.
[14] W. Li, L. Xia, Y. Huang, and S. Mahmoodi, “An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 3, pp. 1557-1571, 2022, doi: 10.1007/s12652-021-03120-0.
[15] P. Stodola, P. Otrisal, and K. Hasilova, “Adaptive ant colony optimization with node clustering applied to the travelling salesman problem,” Swarm Evol. Comput., vol. 70, p. 101056, 2022, doi: 10.1016/j.swevo.2022.101056.
[16] R. Zheng, Y. Zhang, and K. Yang, “A transfer learning-based particle swarm optimization algorithm for travelling salesman problem,” J. Comput. Des. Eng., vol. 9, no. 3, pp. 933-948, 2022, doi: 10.1093/jcde/qwac039.
[17] S.A. Al-Agamy, F.M. Ba-Alwi, and A.M. Mohsen, “A Fuzzy Logic for Parameter Adaptation in Ant Colony Optimization Approach,” Int. J. Innov. Sci. Res. Technol. vol. 7, no. 5, pp. 1549-1560, 2022, doi: 10.5281/zenodo.6774879.
[18] M. Sahin, “Solving TSP by using combinatorial Bees algorithm with nearest neighbor method,” Neural Comput. Appl., vol. 35, no. 2, pp. 1863-1879, 2023, doi: 10.1007/s00521-022-07816-y.
[19] Dataset Description (2022, Dec. 02), [Online]. Available: https://github.com/article2023-uni/code-dataset-Description.
[20] W. Zhangqi, Z. Xiaoguang, and H. Qingyao, “Mobile robot path planning based on parameter optimization ant colony algorithm,” Procedia Eng., vol. 15, pp. 2738-2741, 2011, doi: 10.1016/j.proeng.2011.08.515.
[21] A.K.M.F. Ahmed and J.U. Sun, “An improved particle swarm optimization algorithm for the travelling salesman problem,” Adv. Sci. Lett., vol. 22, no. 11, pp.3318-3322, 2016, doi: 10.1166/asl.2016.7864.
[22] X. Xie and P. Wu, “Research on the optimal combination of ACO parameters based on PSO,” in Int. Conf. Netw. Digit. Soc., Wenzhou, China, 2010, pp. 94-97, doi: 10.1109/ICNDS.2010.5479311.
[23] TSPLIB (2022, Dec. 02), [Online]. Available: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
[24] W. Deng, J. Xu, and H. Zhao, “An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem,” IEEE Access, vol. 7, pp. 20281-20292, 2019, doi: 10.1109/access.2019.2897580.
[25] E. Elsayed, A.H. Omar, and K. Elsayed, “Smart solution for STSP semantic traveling salesman problem via hybrid ant colony system with genetic algorithm,” Int. J. Intell. Eng. Syst., vol. 13, no. 5, pp. 476-489, 2020, doi: 10.22266/ijies2020.1031.42.
[26] A.E. Ezugwu and A.O. Adewumi, “Discrete symbiotic organisms search algorithm for travelling salesman problem,” Expert Syst. Appl., vol. 87, pp. 70-78, 2017, doi: 10.1016/j.eswa.2017.06.007.
[27] E. Liao and C. Liu, “A hierarchical algorithm based on density peaks clustering and ant colony optimization for traveling salesman problem,” IEEE Access, vol. 6, pp. 38921-38933, 2018, doi: 10.1109/access.2018.2853129.
[28] A. Hossam, A. Bouzidi, and M.E. Riffi, “Elephants Herding Optimization for Solving the Travelling Salesman Problem,” in M. Ezziyyani, (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD), Advances in Intelligent Systems and Computing, vol. 912. Springer, Cham, 2019, doi: 10.1007/978-3-030-12065-8_12.
[29] A.E. Ezugwu, A.O. Adewumi, and M.E. Frincu, “Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem,” Expert Syst. Appl., vol. 77, pp. 189-210, 2017, doi: 10.1016/j.eswa.2017.01.053.
[30] A.I. Hammouri, E.T.A. Samra, M.A. Al-Betar, R.M. Khalil, Z. Alasmer, and M. Kanan, “A Dragonfly Algorithm for Solving Traveling Salesman Problem,” in 8th IEEE Int. Conf. Control Syst. Comput. Eng. (ICCSCE), Penang, Malaysia, 2018, pp. 136-141, doi: 10.1109/ICCSCE.2018.8684963.
[31] Z. Zhang, K. Zou, and J. Zhang, “Parameter Analysis for a Novel Ant Colony Optimization Algorithm,” Eng. Technol. Res., 2016, doi: 10.12783/dtetr/icca2016/6052.
[32] Congest (2022, Dec. 02), [Online]. Available: https://report.amap.com/congest.do.
[33] R.S. Cochran, Book Reviews: J. Neter, W. Wasserman, and G.A. Whitmore, Applied Statistics, Boston: Allyn and Bacon, Inc., 1978. pp. xix + 743. Educ. Psychol. Meas., vol. 40, no. 1, pp. 267-270, 1980, doi: 10.1177/001316448004000148.
[34] M. Amiri, L. Mohammad-Khanli, and R. Mirandola, “A new efficient approach for extracting the closed episodes for workload prediction in cloud,” Computing, vol. 102, no. 1, pp. 141-200, 2020, doi: 10.1007/s00607-019-00734-3.
[35] M. Amiri and H. Askari, “Illegal Miner Detection based on Pattern Mining: A Practical Approach,” J. Comput. Secur., vol. 9, no. 2, pp. 1-10, 2022, doi: 10.22108/jcs.2022.133306.1096.
[36] F. Farnaghi-Zadeh, M. Rahmani, and M. Amiri, “Feature Selection Using Neighborhood based Entropy,” J. Univers. Comput. Sci., vol. 28, no. 11, pp. 1169-1192, 2022, doi: 10.3897/jucs.79905.
[37] F. Jaryani, and M. Amiri, “A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets,” Iranian J. Health Sci., vol. 11, no. 1, pp. 47-58, 2023, doi: 10.32598/ijhs.11.1.883.1.