[1] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs Up? Sentiment Classification Using Machine Learning Techniques,” in Proc. Conf. Empir. Methods Nat. Lang. Process., (EMNLP), Philadelphia, PA, USA, 2002, pp. 79-86, doi: 10.3115/1118693.1118704.
[2] A. Rao and N. Spasojevic, “Actionable and Political Text Classification Using Word Embeddings and Lstm,” arXiv, 2016, doi: 10.48550/arXiv.1607.02501.
[3] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep Contextualized Word Representations,” in Proc. Conf. North American Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol., (NAACL-HLT), New Orleans, Louisiana, USA, 2018, vol. 1, pp. 2227-2237, doi: 10.18653/v1/N18-1202.
[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in 1st Int. Conf. Learn. Represent. (ICLR), Scottsdale, Arizona, USA, 2013.
[5] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proc. Conf. North American Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol., (NAACL-HLT), Minneapolis, MN, USA, 2019, vol. 1, pp. 4171-4186, doi: 10.18653/v1/N19-1423.
[6] K. Dashtipour, M. Gogate, A. Adeel, A. Hussain, A. Alqarafi, and T. Durrani, “A comparative study of persian sentiment analysis based on different feature combinations,” in Int. Conf. Commun. Signal Process. Syst. (CSPS), Harbin, China, 2017, pp. 2288-2294, doi: 10.1007/978-981-10-6571-2_279.
[7] S. Ghasemi and A.H. Jadidinejad, “Persian text classification via character-level convolutional neural networks,” in 8th Conf. AI Robot. 10th RoboCup Iranopen Int. Symp. (IRANOPEN), Qazvin, Iran, 2018, pp. 1-6, doi: 10.1109/RIOS.2018.8406623.
[8] S. Zobeidi, M. Naderan, and S.E. Alavi, “Opinion mining in Persian language using a hybrid feature extraction approach based on convolutional neural network”, Multim. Tools Appl., vol. 78, no. 22, pp. 32357-32378, 2019, doi: 10.1007/s11042-019-07993-4.
[9] S. Shumaly, M. Yazdinejad, and Y. Guo, “Persian sentiment analysis of an online store independent of pre-processing using convolutional neural network with fastText embeddings,” PeerJ Comput. Sci., vol. 7, p. e422, 2021, doi: 10.7717/peerj-cs.422.
[10] K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, “Sentiment Analysis of Persian Movie Reviews Using Deep Learning,” Entropy, vol. 23, no. 5, p. 596, 2021, doi: 10.3390/e23050596.
[11] W.F. Satrya, R. Aprilliyani, and E.H. Yossy, “Sentiment analysis of Indonesian police chief using multi-level ensemble model,” Proc. Comput. Sci., vol. 216, pp. 620-629, 2023, doi: 10.1016/j.procs.2022.12.177.
[12] M. Alruily, A.M. Fazal, A.M. Mostafa, and M. Ezz, “Automated Arabic Long-Tweet Classification Using Transfer Learning with BERT,” Appl. Sci., vol. 13, no. 6, p. 3482, 2023, doi: 10.3390/app13063482.
[13] Z.B. Nezhad and M.A. Deihimi, “Twitter sentiment analysis from Iran about COVID 19 vaccine,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 16, no. 1, p. 102367, 2022, doi: 10.1016/j.dsx.2021.102367.
[14] M. Ahangari and A. Sebti, “A Hybrid Approach to Sentiment Analysis of Iranian Stock Market User’s Opinions,” Int. J. Eng., vol. 36, no. 3, pp. 573-584, 2023, doi: 10.5829/ije.2023.36.03c.18.
[15] [15] Ashrafi Asli, S. A., Sabeti, B., Majdabadi, Z., Golazizian, P., Fahmi, R., Momenzadeh, O., “Optimizing Annotation Effort Using Active Learning Strategies: A Sentiment Analysis Case Study in Persian”, in Proc. Twelfth Lang. Resour. Eval. Conf., Marseille, France, 2020, pp. 2855-2861.
[16] M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri, “ParsBERT: Transformer-based Model for Persian Language Understanding,” Neural Process Lett., vol. 53, no. 6, pp. 3831-3847, 2021, doi: 10.1007/s11063-021-10528-4.
[17] P. Hosseini, A.A. Ramaki, H. Maleki, M. Anvari, and S.A. Mirroshandel, “SentiPers: a sentiment analysis corpus for Persian,” arXiv, 2018, doi: 10.48550/arXiv.1801.07737.
[18] J.P.R. Sharami, P.A. Sarabestani., and S.A. Mirroshandel, “Deepsentipers: Novel deep learning models trained over proposed augmented Persian sentiment corpus,” arXiv, 2020, doi: 10.48550/arXiv.2004.05328.
[19] M. Samizadeh, (15 Sep. 2022), Sentiment-Analysis-with-LSTM-in-Persian: v 1.0.0, [Online]. Available: https://zenodo.org/records/6862064.
[20] S. Takase and S. Kobayashi, “All word embeddings from one embedding,” Ann. Conf. Neural Inf. Process. Syst., NeurIPS, virtual, 2020, vol. 33, pp. 3775-3785.
[21] Y. Kim, Y. Jernite, D.A. Sontag, and A.M. Rush, “Character-aware neural language models,” in Proc. 30th AAAI Conf. Artif. Intell., Phoenix, Arizona, USA, 2016, pp. 2741-2749, doi: 10.1609/aaai.v30i1.10362.
[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
[23] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in 30th Int. Conf. Mach. Learn. (ICML), Atlanta, GA, USA, 2013, pp. 1310-1318.
[24] J.P.C. Chiu and E. Nichols, “Named entity recognition with bidirectional LSTM-CNNs,” Trans. Assoc. Comput. Linguistics, vol. 4, pp. 357-370, 2016, doi: 10.1162/tacl_a_00104.
[25] A. Graves, A.R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), Vancouver, BC, Canada, 2013, pp. 6645-6649, doi: 10.1109/ICASSP.2013.6638947.
[26] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder approaches,” in Proc. 8th Worksh. Syntax Semant. Struct. Stat. Transl., Doha, Qatar, 2014, pp. 103-111, doi: 10.3115/v1/W14-4012.
[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” in NIPS Worksh. Deep Learn., 2014.
[28] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015.
[29] M. Feizi-Derakhshi, Z. Mottaghinia, and M. Asgari-Chenaghlu, “Persian Text Classification Based on Deep Neural Networks,” Soft Comput. J., vol. 11, no. 1, pp. 120-139, 2022, doi: 10.22052/scj.2023.243182.1010 [In Persian].
[30] F. Zare Mehrjardi, M. Yazdian-Dehkordi, and A. Latif, “Evaluating classical machine learning and deep-learning methods in sentiment analysis of Persian telegram message,” Soft Comput. J., vol. 11, no. 1, pp. 88-105, 2022, doi: 10.22052/scj.2023.246553.1077 [In Persian].
[31] A. Khosravi and H. Abdolhosseini, “Personality in social networks using thematic modelling of user feedback,” Soft Comput. J., vol. 11, no. 2, pp. 50-61, 2023, doi: 10.22052/scj.2023.243197.1006 [In Persian].