[1] I.H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, p. 420, 2021, doi: 10.1007/s42979-021-00815-1.
[2] F. He, P.K. Olia, R.J. Oskouei, M. Hosseini, Z. Peng, and T. BaniRostam, “Applications of Deep Learning Techniques for Pedestrian Detection in Smart Environments: A Comprehensive Study,” J. Adv. Transp., vol. 2021, no. 1, p. 5549111, 2021, doi: 10.1155/2021/5549111.
[3] A. Mathew, P. Amudha, and S. Sivakumari, “Deep Learning Techniques: An Overview,” in Advanced Machine Learning Technologies and Applications, Adv. Intell. Syst. Comput., vol 1141, Springer, Singapore, 2021, doi: 10.1007/978-981-15-3383-9_54.
[4] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A Survey on Deep Transfer Learning,” in 27th Int. Conf. Artif. Neural Networks (ICANN), Rhodes, Greece, 2018, pp. 270–279, doi: 10.1007/978-3-030-01424-7_27.
[5] W. Cao, Z. Yan, Z. He, and Z. He, “A Comprehensive Survey on Geometric Deep Learning,” IEEE Access, vol. 8, pp. 35929-35949, 2020, doi: 10.1109/ACCESS.2020.2975067.
[6] N.C. Thompson, K.H. Greenewald, K. Lee, and G.F. Manso, “The Computational Limits of Deep Learning,” arXiv, CoRR abs/2007.05558, 2020.
[7] A.T. Harris and H. Schaub, “Spacecraft Command and Control with Safety Guarantees using Shielded Deep Reinforcement Learning,” AIAA 2020-0386, AIAA Scitech 2020 Forum, 2020, doi: doi:10.2514/6.2020-0386.
[8] K. Hovell and S. Ulrich, “On Deep Reinforcement Learning for Spacecraft Guidance,” AIAA 2020-1600, AIAA Scitech 2020 Forum, 2020, doi: 10.2514/6.2020-1600.
[9] H. Fang, H. Shi, Y. Dong, H. Fan, and S. Ren, “Spacecraft power system fault diagnosis based on DNN,” in 2017 Progn. Syst. Health Manag. Conf. (PHM), Harbin, China, 2017, pp. 1-5, doi: 10.1109/PHM.2017.8079271.
[10] M. Xin, Y. Gao, T. Mou, and J. Ye, “Online Hybrid Learning to Speed Up Deep Reinforcement Learning Method for Commercial Aircraft Control,” in 3rd Int. Symp. Auton. Syst. (ISAS), Shanghai, China, 2019, pp. 305-310, doi: 10.1109/ISASS.2019.8757756.
[11] X. Zhang and S. Mahadevan, “Aviation Safety Assessment Using Historical Flight Trajectory Data,” AIAA 2019-3415, AIAA Aviation 2019 Forum, 2019, doi: 10.2514/6.2019-3415.
[12] Y. Yu, H. Yao, and Y. Liu, “A Hybrid Learning Approach for the Simulation of Aircraft Dynamical Systems,” AIAA 2019-0436, AIAA Scitech 2019 Forum, 2019, doi: 10.2514/6.2019-0436.
[13] V. Sekar, M. Zhang, C. Shu, and B. C. Khoo, “Inverse Design of Airfoil Using a Deep Convolutional Neural Network,” AIAA J., vol. 57, no. 3, pp. 993–1003, 2019, doi: 10.2514/1.J057894.
[14] Z. Wang, H. Li, H. Wu, F. Shen, and R. Lu, “Design of Agent Training Environment for Aircraft Landing Guidance Based on Deep Reinforcement Learning,” in 11th Int. Symp. Comput. Intell. Des. (ISCID), Hangzhou, China, 2018, pp. 76-79, doi: 10.1109/ISCID.2018.10118.
[15] V.G. Goecks, P.B. Leal, T. White, J. Valasek, and D.J. Hartl, “Control of Morphing Wing Shapes with Deep Reinforcement Learning,” AIAA 2018-2139, AIAA Information Systems-AIAA Infotech Aerospace, 2018, doi: 10.2514/6.2018-2139.
[16] Y.J. Kim, S. Choi, S. Briceno, and D. Mavris, “A deep learning approach to flight delay prediction,” in IEEE/AIAA 35th Digit. Avion. Syst. Conf. (DASC), Sacramento, CA, USA, 2016, pp. 1-6, doi: 10.1109/DASC.2016.7778092.
[17] B. Li and Y. Wu, “Path Planning for UAV Ground Target Tracking via Deep Reinforcement Learning,” IEEE Access, vol. 8, pp. 29064-29074, 2020, doi: 10.1109/ACCESS.2020.2971780.
[18] H. Huang, Y. Yang, H. Wang, Z. Ding, H. Sari, and F. Adachi, “Deep Reinforcement Learning for UAV Navigation Through Massive MIMO Technique,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1117-1121, 2020, doi: 10.1109/TVT.2019.2952549.
[19] S. Lim, M. Stoeckle, B.J. Streetman, and M. Neave, “Markov Neural Network for Guidance, Navigation and Control,” AIAA 2020-0375, AIAA Scitech 2020 Forum, 2020, doi: doi:10.2514/6.2020-0375.
[20] G. Joshi, J. Virdi, and G. Chowdhary, “Design and Flight Evaluation of Deep Model Reference Adaptive Controller,” AIAA 2020-1336, AIAA Scitech 2020 Forum, 2020, doi: doi:10.2514/6.2020-1336.
[21] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning,” IEEE Access, vol. 7, pp. 146264-146272, 2019, doi: 10.1109/ACCESS.2019.2943253.
[22] W. Zhang, K. Song, X. Rong, and Y. Li, “Coarse-to-Fine UAV Target Tracking With Deep Reinforcement Learning,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1522–1530, 2019, doi: 10.1109/TASE.2018.2877499.
[23] S. Edhah, S. Mohamed, A. Rehan, M. AlDhaheri, A. AlKhaja, and Y. Zweiri, “Deep Learning Based Neural Network Controller for Quad Copter: Application to Hovering Mode,” in Int. Conf. Electr. Comput. Technol. Appl. (ICECTA), Ras Al Khaimah, United Arab Emirates, 2019, pp. 1-5, doi: 10.1109/ICECTA48151.2019.8959776.
[24] H. Lee, M. McCrink, and J.W. Gregory, “Visual-Inertial Odometry for Unmanned Aerial Vehicle using Deep Learning,” AIAA 2019-1410, AIAA Scitech 2019 Forum, 2019, doi: doi:10.2514/6.2019-1410.
[25] Y. Choi, M. Martel, S.I. Briceno, and D.N. Mavris, “Multi-UAV Trajectory Optimization and Deep Learning-based Imagery Analysis for a UAS-based Inventory Tracking Solution,” AIAA 2019-1569, AIAA Scitech 2019 Forum, 2019, doi: doi:10.2514/6.2019-1569.
[26] O. Walker, F. Vanegas, F. Gonzalez, and S. Koenig, “A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments,” in IEEE Aerosp. Conf., Big Sky, MT, USA, 2019, pp. 1-14, doi: 10.1109/AERO.2019.8742226.
[27] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang, “UAV Autonomous Target Search Based on Deep Reinforcement Learning in Complex Disaster Scene,” IEEE Access, vol. 7, pp. 117227-117245, 2019, doi: 10.1109/ACCESS.2019.2933002.
[28] J. Choi and W.-C. Park, “Object movement highlighting technique using a deep-learning based object detector for effective UAV control,” in 34th Int. Techn. Conf. Circuits/Syst. Comput. Commun. (ITC-CSCC), JeJu, Korea (South), 2019, pp. 1-4, doi: 10.1109/ITC-CSCC.2019.8793321.
[29] E. Bohn, E.M. Coates, S. Moe, and T.A. Johansen, “Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using Proximal Policy optimization,” in Int. Conf. Unmanned Aircraft Syst. (ICUAS), Atlanta, GA, USA, 2019, pp. 523-533, doi: 10.1109/ICUAS.2019.8798254.
[30] C. Sahin, B. Eroglu, N.K. Ure, and H.B. Kurt, “Deep Recurrent and Convolutional Networks for Robust Fault Tolerant Autonomous Landing Control System Design Under Severe Conditions,” AIAA 2019-1665, AIAA Scitech 2019 Forum, 2019, doi: doi:10.2514/6.2019-1665.
[31] Y. Xu, Z. Liu, and X. Wang, “Monocular Vision based Autonomous Landing of Quadrotor through Deep Reinforcement Learning,” in 37th Chinese Control Conf. (CCC), Wuhan, China, 2018, pp. 10014-10019, doi: 10.23919/ChiCC.2018.8482830.
[32] D. Zhou, J. Zhou, M. Zhang, D. Xiang, and Z. Zhong, “Deep learning for unmanned aerial vehicles landing carrier in different conditions,” in 18th Int. Conf. Adv. Robotics (ICAR), Hong Kong, China, 2017, pp. 469-475, doi: 10.1109/ICAR.2017.8023651.
[33] Y. Yu and Y. Liu, “A Hybrid Learning Approach for the Simulation of Dynamics of Unmanned Aircraft Vehicle,” AIAA 2019-2940, AIAA Aviation 2019 Forum, 2019, doi:10.2514/6.2019-2940.
[34] R. Ravishankar and S.R. Chakravarthy, “Kinematic Prediction for Autonomous Aircraft Using Deep Learning Based Optical Detection,” AIAA 2019-3190, AIAA Aviation 2019 Forum, 2019, doi:10.2514/6.2019-3190.
[35] M.H. Olyaei, H. Jalali, A. Noori, and N. Eghbal, “Fault Detection and Identification on UAV System with CITFA Algorithm Based on Deep Learning,” in Iranian Conf. Electr. Eng. (ICEE), Mashhad, Iran, 2018, pp. 988-993, doi: 10.1109/ICEE.2018.8472529.
[36] H. Yao, Q. Yu, X. Xing, F. He, and J. Ma, “Deep-learning-based moving target detection for unmanned air vehicles,” in 36th Chinese Control Conf. (CCC), Dalian, China, 2017, pp. 11459-11463, doi: 10.23919/ChiCC.2017.8029186.
[37] Y. Kaidi, M. Zhaowei, L. Jinhong, S. Sibo, and Z. Yulin, “Unsupervised Representation Learning Method for UAV’s Scene Perception,” in IEEE 9th Int. Conf. Softw. Eng. Serv. Sci. (ICSESS), Beijing, China, 2018, pp. 323-327, doi: 10.1109/ICSESS.2018.8663930.
[38] Y. Li, H. Li, Z. Li, H. Fang, A.K. Sanyal, Y. Wang, and Q. Qiu, “Fast and Accurate Trajectory Tracking for Unmanned Aerial Vehicles based on Deep Reinforcement Learning,” in IEEE 25th Int. Conf. Embed. Real-Time Comput. Syst. Appl. (RTCSA), Hangzhou, China, 2019, pp. 1-9, doi: 10.1109/RTCSA.2019.8864571.
[39] U. Challita, W. Saad, and C. Bettstetter, “Deep Reinforcement Learning for Interference-Aware Path Planning of Cellular-Connected UAVs,” in IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA, 2018, pp. 1-7, doi: 10.1109/ICC.2018.8422706.
[40] T. Watanabe and E.N. Johnson, “Trajectory Generation using Deep Neural Network,” AIAA 2018-1893, 2018 AIAA Information Systems-AIAA Infotech Aerospace, 2018, doi: doi:10.2514/6.2018-1893.
[41] C. Wang, J. Wang, X. Zhang, and X. Zhang, “Autonomous navigation of UAV in large-scale unknown complex environment with deep reinforcement learning,” in IEEE Glob. Conf. Signal Inf. Process. (GlobalSIP), Montreal, QC, Canada, 2017, pp. 858-862, doi: 10.1109/GlobalSIP.2017.8309082.
[42] D. Kwon and J. Kim, “Optimal Trajectory Learning for UAV-BS Video Provisioning System: A Deep Reinforcement Learning Approach,” in Int. Conf. Inf. Networking (ICOIN), Kuala Lumpur, Malaysia, 2019, pp. 372-374, doi: 10.1109/ICOIN.2019.8718194.
[43] R. Geraldes, A. Goncalves, T. Lai, M. Villerabel, W. Deng, A. Salta, K. Nakayama, Y. Matsuo, and H. Prendinger, “UAV-Based Situational Awareness System Using Deep Learning,” IEEE Access, vol. 7, pp. 122583-122594, 2019, doi: 10.1109/ACCESS.2019.2938249.
[44] A. Manukyan, M.A. Olivares-Mendez, M. Geist, and H. Voos, “Deep Reinforcement Learning-based Continuous Control for Multicopter Systems,” in 6th Int. Conf. Control Decis. Inf. Technol. (CoDIT), Paris, France, 2019, pp. 1876-1881, doi: 10.1109/CoDIT.2019.8820368.
[45] S. Raj, M. Dreyer, and S. Gururajan, “Autonomous Quadcopter Navigation Using Vision-Based Landmark Recognition,” in Aviat. Technol. Integr. Oper. Conf., 2018, doi:10.2514/6.2018-4243.
[46] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV With Limited Environment Knowledge,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 107-118, 2021, doi: 10.1109/TITS.2019.2954952.
[47] X. Han, J. Wang, J. Xue, and Q. Zhang, “Intelligent Decision-Making for 3-Dimensional Dynamic Obstacle Avoidance of UAV Based on Deep Reinforcement Learning,” in 11th Int. Conf. Wirel. Commun. Signal Process. (WCSP), Xi’an, China, 2019, pp. 1-6, doi: 10.1109/WCSP.2019.8928110.
[48] H.T. Nguyen, M. Garratt, L.T. Bui, and H. Abbass, “Supervised deep actor network for imitation learning in a ground-air UAV-UGVs coordination task,” in IEEE Symp. Series Comput. Intell. (SSCI), Honolulu, HI, USA, 2017, pp. 1-8, doi: 10.1109/SSCI.2017.8285387.
[49] C.H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-Efficient UAV Control for Effective and Fair Communication Coverage: A Deep Reinforcement Learning Approach,” IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2059-2070, 2018, doi: 10.1109/JSAC.2018.2864373.
[50] L. Bashmal and Y. Bazi, “Learning Robust Deep Features for Efficient Classification of UAV Imagery,” in 1st Int. Conf. Comput. Appl. Inf. Secur. (ICCAIS), Riyadh, Saudi Arabia, 2018, pp. 1-4, doi: 10.1109/CAIS.2018.8441965.
[51] G.V. Konoplich, E.O. Putin, and A.A. Filchenkov, “Application of deep learning to the problem of vehicle detection in UAV images,” in XIX IEEE Int. Conf. Soft Comput. Meas. (SCM), St. Petersburg, Russia, 2016, pp. 4-6, doi: 10.1109/SCM.2016.7519666.
[52] G.J. Mendis, J. Wei, and A. Madanayake, “Deep learning cognitive radar for micro UAS detection and classification,” in Cogn. Commun. Aerosp. Appl. Worksh. (CCAA), Cleveland, OH, USA, 2017, pp. 1-5, doi: 10.1109/CCAAW.2017.8001610.
[53] H. Yang, B. Hu, and L. Wang, “A deep learning based handover mechanism for UAV networks,” in 20th Int. Symp. Wirel. Pers. Multimedia Commun. (WPMC), Bali, Indonesia, 2017, pp. 380-384, doi: 10.1109/WPMC.2017.8301842.
[54] H. Kim, D. Kim, S. Jung, J. Koo, J.-U. Shin, and H. Myung, “Development of a UAV-type jellyfish monitoring system using deep learning,” in 12th Int. Conf. Ubiquitous Robots Ambient Intell. (URAI), Goyangi, Korea (South), 2015, pp. 495-497, doi: 10.1109/URAI.2015.7358813.
[55] Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic Spectrum Interaction of UAV Flight Formation Communication with Priority: A Deep Reinforcement Learning Approach,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 3, pp. 892–903, 2020, doi: 10.1109/TCCN.2020.2973376.
[56] J. Dunn and R. Tron, “Temporal Siamese Networks for Clutter Mitigation Applied to Vision-Based Quadcopter Formation Control,” IEEE Robotics Autom. Lett., vol. 6, no. 1, pp. 32–39, 2021, doi: 10.1109/LRA.2020.3028056.
[57] W. Xie, K. Wu, F. Yan, H. Shi, and X. Zhang, “A Formation Flight Method with an Improved Deep Neural Network for Multi-UAV System,” J. Northw. Polytech. Univ., vol. 38, no. 2, pp. 295-302, 2020, doi: 10.1051/jnwpu/20203820295.
[58] B. Zhang, X. Sun, S. Liu, and X. Deng, “Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight,” Int. J. Aerosp. Eng., vol. 2019, no. 1, p. 7272387, 2019, doi: 10.1155/2019/7272387.
[59] Q. Liu, E. Moulay, P. Coirault, and Q. Hui, “Deep Learning Based Formation Control for the Multi-Agent Coordination,” in IEEE 16th Int. Conf. Networking Sensing Control (ICNSC), Banff, AB, Canada, 2019, pp. 12-17, doi: 10.1109/ICNSC.2019.8743254.
[60] H. Liu, Q. Meng, F. Peng, and F.L. Lewis, “Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning,” Neurocomputing, vol. 412, pp. 63–71, 2020, doi: 10.1016/j.neucom.2020.06.040.
[61] S. Silvestrini and M.R. Lavagna, “Spacecraft Formation Relative Trajectories Identification for Collision-Free Maneuvers using Neural-Reconstructed Dynamics,” AIAA 2020-1918, AIAA Scitech 2020 Forum, 2020, doi: doi:10.2514/6.2020-1918.
[62] R. Conde, J. Llata, and C. Torre-Ferrero, “Time-Varying Formation Controllers for Unmanned Aerial Vehicles Using Deep Reinforcement Learning,” arXiv, CoRR abs/1706.01384, 2017.
[63] Y. Zhao, J. Ma, X. Li, and J. Zhang, “Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery,” Sensors, vol. 18, no. 3, p. 712, 2018, doi: 10.3390/s18030712.