[1] J. Li, X. Shen, L. Chen, D.P. Van, J. Ou, L. Wosinska, and J. Chen, “Service Migration in Fog Computing Enabled Cellular Networks to Support Real-Time Vehicular Communications,” IEEE Access, vol. 7, pp. 13704-13714, 2019, doi: 10.1109/ACCESS.2019.2893571.
[2] M. Shirkhani, K. Khamforoosh, and M. Izadbin, “Providing an improved greedy approach for increasing the number of Served users in cloud-edge networks,” Soft Comput. J., vol. 10, no. 1, pp. 32-47, 2021, doi: 10.22052/scj.2022.243195.1005 [In Persian].
[3] M. Nickray and E. hosseini, “A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment,” Soft Comput. J., vol. 8, no. 1, pp. 43-57, 2019, doi: 10.22052/8.1.43 [In Persian].
[4] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H.C. Cankaya, Q. Zhang, W. Xie, and J.P. Jue, “FOGPLAN: A Lightweight QoS-Aware Dynamic Fog Service Provisioning Framework,” IEEE Internet Things J., vol. 6, no. 3, pp. 5080-5096, 2019, doi: 10.1109/JIOT.2019.2896311.
[5] S. Gholamshahi and S.M.H. Hasheminejad, “A method for identifying software components based on Non-dominated Sorting Genetic Algorithm,” Soft Comput. J., vol. 7, no. 2, pp. 47-64, 2019, dor: 20.1001.1.23223707.1397.7.2.4.5 [In Persian].
[6] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, “Solving the Multi-Objective Problem of IoT Service Placement in Fog Computing Using Cuckoo Search Algorithm,” Neural Process. Lett., vol. 54, no. 3, pp. 1823-1854, 2022, doi: 10.1007/s11063-021-10708-2.
[7] M. Ghobaei-Arani and A. Shahidinejad, “A cost-efficient IoT service placement approach using whale optimization algorithm in fog computing environment,” Expert Syst. Appl., vol. 200, p. 117012, 2022, doi: 10.1016/j.eswa.2022.117012.
[8] B. Wu, X. Lv, W.D. Shamsi, and E.G. Dizicheh, “Optimal deploying IoT services on the fog computing: A metaheuristic-based multi-objective approach,” J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 10 Part B, pp. 10010-10027, 2022, doi: 10.1016/j.jksuci.2022.10.002.
[9] B.V. Natesha and R.M.R. Guddeti, “Meta-heuristic Based Hybrid Service Placement Strategies for Two-Level Fog Computing Architecture,” J. Netw. Syst. Manag., vol. 30, no. 3, p. 47, 2022, doi: 10.1007/s10922-022-09660-w.
[10] M. Azimzadeh, A. Rezaee, S.J. Jassbi, and M. Esnaashari, “Placement of IoT services in fog environment based on complex network features: a genetic-based approach,” Clust. Comput., vol. 25, no. 5, pp. 3423-3445, 2022, doi: 10.1007/s10586-022-03571-w.
[11] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, “A genetic-based approach for service placement in fog computing,” J. Supercomput., vol. 78, no. 8, pp. 10854-10875, 2022, doi: 10.1007/s11227-021-04254-w.
[12] F. Santos, R. Immich, and E.R.M. Madeira, “Multimedia services placement algorithm for cloud-fog hierarchical environments,” Comput. Commun., vol. 191, pp. 78-91, 2022, doi: 10.1016/j.comcom.2022.04.009.
[13] S. Shaik and S. Baskiyar, “Distributed service placement in hierarchical fog environments,” Sustain. Comput. Informatics Syst., vol. 34, p. 100744, 2022, doi: 10.1016/j.suscom.2022.100744.
[14] M. Tekiyehband, M. Ghobaei-Arani, and A. Shahidinejad, “An efficient dynamic service provisioning mechanism in fog computing environment: A learning automata approach,” Expert Syst. Appl., vol. 198, p. 116863, 2022, doi: 10.1016/j.eswa.2022.116863.
[15] S. Pallewatta, V. Kostakos, and R. Buyya, “QoS-aware placement of microservices-based IoT applications in Fog computing environments,” Future Gener. Comput. Syst., vol. 131, pp. 121-136, 2022, doi: 10.1016/j.future.2022.01.012.
[16] D. Zhao, Q. Zou, and M.B. Zadeh, “A QoS-Aware IoT Service Placement Mechanism in Fog Computing Based on Open-Source Development Model,” J. Grid Comput., vol. 20, no. 2, p. 12, 2022, doi: 10.1007/s10723-022-09604-3.
[17] H.O. Hassan, S. Azizi, and M. Shojafar, “Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments,” IET Commun., vol. 14, no. 13, pp. 2117-2129, 2020, doi: 10.1049/iet-com.2020.0007.
[18] W. Ram?rez, X. Masip-Bruin, E. Mar?n-Tordera, V.B.C. Souza, A. Jukan, G.-J. Ren, and O.G. de Dios, “Evaluating the benefits of combined and continuous Fog-to-Cloud architectures,” Comput. Commun., vol. 113, pp. 43-52, 2017, doi: 10.1016/j.comcom.2017.09.011.
[19] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya, “QoS-aware service provisioning in fog computing,” J. Netw. Comput. Appl., vol. 165, p. 102674, 2020, doi: 10.1016/j.jnca.2020.102674.
[20] M. Zare, Y.E. Sola, and H. Hasanpour, “Towards distributed and autonomous IoT service placement in fog computing using asynchronous advantage actor-critic algorithm,” J. King Saud Univ. Comput. Inf. Sci., vol. 35, no. 1, pp. 368-381, 2023, doi: 10.1016/j.jksuci.2022.12.006.
[21] N.B. Salah and N.B.B. Saoud, “Adaptive data placement in the Fog infrastructure of IoT applications with dynamic changes,” Simul. Model. Pract. Theory, vol. 119, p. 102557, 2022, doi: 10.1016/j.simpat.2022.102557.
[22] A. Alammari, S.A. Moiz, and A. Negi, “Enhanced layered fog architecture for IoT sensing and actuation as a service,” Sci. Rep., vol. 11, p. 21693, 2021, doi: 10.1038/s41598-021-00926-y.
[23] B.V. Natesha and R.M.R. Guddeti, “Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment,” J. Netw. Comput. Appl., vol. 178, p. 102972, 2021, doi: 10.1016/j.jnca.2020.102972.
[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, 2002, doi: 10.1109/4235.996017.
[25] T.-P. Hong, H.-S. Wang, W.-Y. Lin, and W.-Y. Lee, “Evolution of Appropriate Crossover and Mutation Operators in a Genetic Process,” Appl. Intell., vol. 16, no. 1, pp. 7-17, 2002, doi: 10.1023/A:1012815625611.
[26] J. Zhang, H.S.-H. Chung, and W.-L. Lo, “Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms,” IEEE Trans. Evol. Comput., vol. 11, no. 3, pp. 326-335, 2007, doi: 10.1109/TEVC.2006.880727.
[27] K.S. Narendra and M.A.L. Thathachar, Learning automata - an introduction, Prentice Hall 1989, ISBN 978-0-13-527011-0, pp. 1-476.
[28] R. Buyya and S.N. Srirama, “Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit,” in Fog and Edge Computing: Principles and Paradigms, Wiley, 2019, pp.433-465, doi: 10.1002/9781119525080.ch17.
[29] MAVI (Sep. 2022), Wide mawi working group traffic archive, [Online]. Available: http://mawi.wide.ad.jp.