[1] R. Saniei, A. Qeble, and M. Ebrahimi Moghadam, “identity recognition based on the way of walking using fuzzy-spiky hierarchical model,” Comput. Sci. J., vol. 3, no. 4, pp. 80-95, 2018 [In Persian].
[2] V. Esmaeili, M. Mohassel Feghhi, and S.O. Shahdi, “A comprehensive survey on facial micro-expression: approaches and databases,” Multim. Tools Appl., vol. 81, no. 28, pp. 40089-40134, 2022, doi: 10.1007/s11042-022-13133-2.
[3] V. Esmaeili and M. Mohassel Feghhi, “Diagnosis of Covid-19 Disease by Combining Hand-crafted and Deep-learning Methods on Ultrasound Data,” J. Mach. Vis. Image Process., vol. 9, no. 4, pp. 31-41, 2022, dor: 20.1001.1.23831197.1401.9.4.3.0.
[4] V. Esmaeili, M. Mohassel Feghhi, and S.O. Shahdi, “Early COVID-19 Diagnosis from Lung Ultrasound Images Combining RIULBP-TP and 3D-DenseNet,” in 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Bam, Iran, 2022, pp. 1-5, doi: 10.1109/CFIS54774.2022.9756430.
[5] M. Eftekharian and A. Nodehi, “Breast Cancer Diagnosis and Classification Improvement based on Deep Learning and image Processing methods,” Soft Comput. J., 2022, doi: 10.22052/scj.2023.246416.1067 [In Persian].
[6] F. Zare Mehrjardi, M. Yazdian-Dehkordi, and A. Latif, “Evaluating classical machine learning and deep-learning methods in sentiment analysis of Persian telegram message,” Soft Comput. J., vol. 11, no. 1, pp. 88-105, 2022, doi: 10.22052/scj.2023.246553.1077 [In Persian].
[7] Z. Farahmandpoor, H. Nikmehr, M. Mansoorizade, and O. Tabibzadeh Ghamsary, “A Novel Intelligent Persian Authorship System based on Writing Style,” Soft Comput. J., vol. 1, no. 2, pp. 26-35, 2013, dor: 20.1001.1.23223707.1391.1.2.60.9 [In Persian].
[8] J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 21-30, 2004, doi: 10.1109/TCSVT.2003.818350.
[9] T.W. Ng, T.L. Tay, and S.W. Khor, “Iris recognition using rapid Haar wavelet decomposition,” in 2nd Int. Conf. Signal Process. Syst., Dalian, China, 2010, pp. V1-820-V1-823, doi: 10.1109/ICSPS.2010.5555246.
[10] L. Ma, Y. Wang, and T. Tan, “Iris recognition using circular symmetric filters,” in Proc. 16th Int. Conf. Pattern Recognit., Quebec City, QC, Canada, 2002, pp. 414-417 vol.2, doi: 10.1109/ICPR.2002.1048327.
[11] C.-H. Park, J.-J. Lee, M.J. Smith, and K.-H. Park, “Iris based personal authentication using a normalized directional energy feature,” in Proc. Int. Conf. Audio Video-Based Biometric Person Authentication, Berlin, Heidelberg, doi: 10.1007/3-540-44887-X_27.
[12] A. Czajka, D. Moreira, K.W. Bowyer, and P.J. Flynn, “Domain-specific human-inspired binarized statistical image features for Iris recognition,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Waikoloa, HI, USA, 2019, pp. 959-967, doi: 10.1109/WACV.2019.00107.
[13] N. Liu, M. Zhang, H. Li, Z. Sun, and T. Tan, “Deepiris: Learning pairwise filter bank for heterogeneous iris verification,” Pattern Recognit. Lett., vol. 82, pp. 154-161, 2016, doi: 10.1016/j.patrec.2015.09.016.
[14] A. Gangwar and A. Joshi, “DeepIrisNet: Deep iris representation with applications in iris recognition and cross sensor iris recognition,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Phoenix, AZ, USA, 2016, pp. 2301-2305, doi: 10.1109/ICIP.2016.7532769.
[15] Z. Zhao and A. Kumar, “Towards more accurate iris recognition using deeply learned spatially corresponding features,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Venice, Italy, 2017, pp. 3829-3838, doi: 10.1109/ICCV.2017.411.
[16] K. Wang and A. Kumar, “Toward more accurate iris recognition using dilated residual features,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 12, pp. 3233-3245, 2019, doi: 10.1109/TIFS.2019.2913234.
[17] K. Nguyen, C. Fookes, A. Ross, and S. Sridharan, “Iris recognition with off-the-shelf CNN features: A deep learning perspective,” IEEE Access, vol. 6, pp. 18848-18855, 2018, doi: 10.1109/ACCESS.2017.2784352.
[18] S. Minaee, A. Abdolrashidiy, and Y. Wang, “An experimental study of deep convolutional features for iris recognition,” in Proc. IEEE Signal Process. Med. Biol. Symp. (SPMB), Philadelphia, PA, USA, 2016, pp. 1-6, doi: 10.1109/SPMB.2016.7846859.
[19] T. Zhao, Y. Liu, G. Huo, and X. Zhu, “A deep learning iris recognition method based on capsule network architecture,” IEEE Access, vol. 7, pp. 49691-49701, 2019, doi: 10.1109/ACCESS.2019.2911056.
[20] J.E. Zambrano, D.P. Benalcazar, C.A. Perez, and K.W. Bowyer, “Iris Recognition Using Low-Level CNN Layers Without Training and Single Matching,” IEEE Access, vol. 10, pp. 41276-41286, 2022, doi: 10.1109/ACCESS.2022.3166910.
[21] J. Sun, S. Zhao, S. Miao, X. Wang, and Y. Yu, “Open?set iris recognition based on deep learning,” IET Image Process., vol. 16, no. 9, pp. 2361-2372, 2022, doi: 10.1049/ipr2.12493.
[22] M.R.R. Fini, M.A.A. Kashani, and M. Rahmati, “Eye detection and tracking in image with complex background,” in 3rd Int. Conf. Electron. Comput. Technol., Kanyakumari, India, 2011, pp. 57-61, doi: 10.1109/ICECTECH.2011.5942050.
[23] M.A.A. Kashani, M.M. Arani, and M.R.R. Fini, “Eye detection and tracking in images with using bag of pixels,” in 3rd Int. Conf. Commun. Softw. Networks, Xi’an, China, 2011, pp. 64-68, doi: 10.1109/ICCSN.2011.6014219.
[24] C. Tomasi and T. Kanade, Detection and Tracking of Point Features, School of Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.
[25] X. Li, X. Hong, A. Moilanen, X. Huang, T. Pfister, G. Zhao, and M. Pietikainen, “Towards reading hidden emotions: a comparative study of spontaneous micro-expression spotting and recognition methods,” IEEE Trans. Affect. Comput., vol. 9, no. 4, pp. 563–577, 2018, doi: 10.1109/TAFFC.2017.2667642.
[26] C. Hu, D. Jiang, H. Zou, X. Zuo, and Y. Shu, “Multi-task micro-expression recognition combining deep and handcrafted features,” in 24th Int. Conf. Pattern Recogni. (ICPR), Beijing, China, 2018, pp. 946-951, doi: 10.1109/ICPR.2018.8545555.
[27] W.J. Yan, X. Li, S.J. Wang, G. Zhao, Y.J. Liu, Y.H. Chen, and X. Fu, X., “CASME II: An improved spontaneous micro-expression database and the baseline evaluation,” PloS one, vol. 9, no. 1, p. e86041, 2014, doi: 10.1371/journal.pone.0086041.
[28] W.J. Yan, Q. Wu, Y.J. Liu, S.J. Wang, and X. Fu, “CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces,” in 10th IEEE Int. Conf. Worksh. Autom. Face Gesture Recogni. (FG), Shanghai, China, 2013, pp. 1-7, doi: 10.1109/FG.2013.6553799.
[29] H. Dalianis, “Evaluation Metrics and Evaluation,” in Clinical Text Mining, pp.45-53, 2018, doi: 10.1007/978-3-319-78503-5_6.
[30] V. Esmaeili, M. Mohassel Feghhi, S.O. Shahdi, “Spotting micro?movements in image sequence by introducing intelligent cubic?LBP,” IET Image Process., vol. 16, no. 14, pp. 3814-3830, 2022, doi: 10.1049/ipr2.12596.
[31] V. Esmaeili, M. Mohassel Feghhi, S.O. Shahdi, “Automatic Micro-Expression Recognition using LBP-SIPl and FR-CNN,” AUT J. Model. Simul., vol. 54, no. 1, pp. 59-72, 2022, doi: 10.22060/MISCJ.2022.21133.5272.
[32] V. Esmaeili, M. Mohassel Feghhi, S.O. Shahdi, “Micro-Expression Recognition based on the Multi-Color ULBP and Histogram of Gradient Direction from Six Intersection Planes,” J. Iranian Assoc. Electr. Electron. Eng., vol. 19, no. 3, pp. 123-130, 2022, doi: 10.52547/jiaeee.19.3.123.