[1] M. Sheikhan and Z. Jafarinasab, “Air Pollution Prediction Using an Artificial Neural Network Trained by Chaotic Gravitational Search Algorithm: A Comparative Study,” Soft Comput. J., vol. 5, no. 2, pp. 48-65, 2017, dor: 20.1001.1.23223707.1395.5.2.5.2 [In Persian].
[2] A.A. Mottakan, A. Shakiba, S.H. Poorali, and I. Baharloo, “Determination of Spatial Variation of CO and PM10 Air Pollutants, Using GIS Techniques (Case study: Teheran, Iran),” Iranian J. Remote Sens. GIS, vol. 1, no. 1, pp. 57-72, 2009 [In Persian].
[3] Z. Jiang, T. Zheng, M. Bergin, and D. Carlson, “Improving spatial variation of ground-level PM2.5 prediction with contrastive learning from satellite imagery,” Sci. Remote Sens., vol. 5, p. 100052, 2022, doi: 10.1016/j.srs.2022.100052.
[4] R. Qorbani Salkhord, M.R. Mobasheri, and M. Rahimzadehgan, “A Fast Method for Assessment of PM10 Concentration Using MODIS Images, A Case Study in Tehran,” Hakim, vol. 15, no. 2, pp. 166-177, 2012 [In Persian].
[5] F. Jahani Chehre Barq and M. Akhoundzadeh Hanzai, “Estimation of the optical thickness of aerials over a region in Iran using the combination of MODIS images from the TERRA and AQUA satellite platforms,” Sci.-Res. Quarterly Geogr. Inf. "Sepehr," vol. 26, no. 103, pp. 71-81, 2017, doi: 10.22131/sepehr.2017.28894 [In Persian].
[6] K. Rangzan, A. Zarasvandi, A. Abdolkhani, and B. Mojaradi, “Modeling of Air Pollution using MODIS Data: Khouzestan Dust storm,” Adv. Appl. Geology, vol. 4, no. 4, pp. 38-45, 2014 [In Persian].
[7] S. Mohammadi-Nezhad, A. Alimohammadi-Sarab, and M. Farajzadeh-Asl, “Air particles (less than 10Mq) spatialdistribution Analysis andmapping in Khuzestan area based on Modissensorproducts,” J. Spatial Planning, vol. 18, no. 3, pp. 79-98, 2014 [In Persian].
[8] I. Saraswat, R.K. Mishra, and A. Kumar, “Estimation of PM10 concentration from Landsat 8 OLI satellite imagery over Delhi, India,” Remote Sens. Appl. Soc. Environ., vol. 8, pp. 251-257, 2017, doi: 10.1016/j.rsase.2017.10.006.
[9] N.A.F.K. Zaman, K.D. Kanniah, and D.G. Kaskaoutis, “Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia,” Atmospheric Res., vol. 193, pp. 142-162, 2017, doi: 10.1016/j.atmosres.2017.04.019.
[10] G. Chen, J. Guang, Y. Xue, Y. Li, Y. Che, and S. Gong, “A Physically Based PM2.5 Estimation Method Using AERONET Data in Beijing Area,” IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., vol. 11, no. 6,, pp. 1957-1965, 2018, doi: 10.1109/JSTARS.2018.2817243.
[11] S. Park, J. Lee, J. Im, C.-K. Song, M. Choi, J. Kim, S. Lee, R. Park, S.-M. Kim, J. Yoon, D.-W. Lee, and L.J. Quackenbush, “Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models,” Sci. Total Environ., vol. 713, p. 136516, 2020, doi: 10.1016/j.scitotenv.2020.136516.
[12] T. Li, H. Shen, Q. Yuan, and L. Zhang, “Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5,” ISPRS J. Photogrammetry Remote Sens., vol. 167, pp. 178-188, 2020, doi: 10.1016/j.isprsjprs.2020.06.019.
[13] M. Imani, “Random Forest with Attribute Profile for Remote Sensing Image Classification,” 11th Iranian and the first International Conference on Machine Vision and Image Processing (MVIP 2020), Qom, Iran, 18-20 February 2020, doi: 10.1109/MVIP49855.2020.9116878.
[14] D. Bostan, “Satellite orbital mode vector prediction using time series and neural networks,” Space Sci. Technol., vol. 11, no. 3, pp. 47-61, 2018, dor: 20.1001.1.20084560.1397.11.3.5.5 [In Persian].
[15] F. Elmaz, R. Eyckerman, W. Casteels, S. Latre, and P. Hellinckx, “CNN-LSTM architecture for predictive indoor temperature modeling,” Build. Environ., vol. 206, p. 108327, 2021, doi: 10.1016/j.buildenv.2021.108327.
[16] W. Zha, Y. Liu, Y. Wan, R. Luo, D. Li, S. Yang, and Y. Xu, “Forecasting monthly gas field production based on the CNN-LSTM model,” Energy, vol. 260, p. 124889, 2022, doi: 10.1016/j.energy.2022.124889.
[17] A. Can Ozdemir, K. Bulus, and K. Zor, “Medium- to long-term nickel price forecasting using LSTM and GRU networks,” Resour. Policy, vol. 78, p. 102906, 2022, doi: 10.1016/j.resourpol.2022.102906.
[18] X. Li, X. Ma, F. Xiao, C. Xiao, F. Wang, and S. Zhang, “Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA),” J. Petrol. Sci. Eng., vol. 208, Part A, 2022, doi: 10.1016/j.petrol.2021.109309.
[19] H. Jafarian and S. Behzadi, “Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models,” Pollution, vol. 6, no. 3, pp. 521-529, 2020, doi: 10.22059/poll.2020.292065.706.
[20] T. Amnuaylojaroen, “Prediction of PM2.5 in an Urban Area of Northern Thailand Using Multivariate Linear Regression Model,” Adv. Meteorol., p. 3190484, 2022, doi: 10.1155/2022/3190484.
[21] S. Gundogdu, G. Tuna Tuygun, Z.., Li, J. Wei, and T. Elbir, “Estimating daily PM2.5 concentrations using an extreme gradient boosting model based on VIIRS aerosol products over southeastern Europe,” Air Qual Atmos Health, vol. 15, pp. 2185–2198, 2022, doi: 10.1007/s11869-022-01245-5.
[22] S. Afzali, M.K. Moayyedi, and F. Fotouhi, “Development of an equation-free reduced-order model based on different feature extraction patterns on the two-dimensional steady-state heat transfer dataset,” Soft Comput. J., vol. 10, no. 1, pp. 16-31, 2021, doi: 10.22052/scj.2021.242830.0 [In Persian].
[23] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].