[1] N. Kavya, N. Sriraam, N. Usha, B. Hiremath, A. Suresh, D. Sharath, B. Venkatraman, and M. Menaka, “Breast cancer lesion detection from cranial-caudal view of mammogram images using statistical and texture features extraction,” Int. J. Biomed. Clin. Eng. (IJBCE), vol. 9, no. 1, p. 17, doi: 10.4018/IJBCE.2020010102.
[2] M. Kikuchi, T. Hayashida, R. Watanuki, A. Nakashoji, Y. Kawai, A. Nagayama, T. Seki, M. Takahashi, and Y. Kitagawa, “Abstract p1-02-09: Diagnostic system of breast ultrasound images using convolutional neural network,” vol. 80, 02 2020, pp. P1–02, doi: 10.1158/1538-7445.SABCS19-P1-02-09.
[3] T. Mahmood, J. Li, Y. Pei, and F. Akhtar, “An automated in-depth feature learning algorithm for breast abnormality prognosis and robust characterization from mammography images using deep transfer learning,” Biology, vol. 10, no. 9, 2021, doi: 10.3390/biology10090859.
[4] M. A. Naji, S. E. Filali, K. Aarika, E. H. Benlahmar, R. A. Abdelouhahid, and O. Debauche, “Machine learning algorithms for breast cancer prediction and diagnosis,” Procedia Comput. Sci., vol. 191, pp. 487–492, 2021, doi: 10.1016/j.procs.2021.07.062.
[5] U. Naseem, J. Rashid, L. Ali, J. Kim, Q. Emadul-Haq, M. J. Awan, and M. Imran, “An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers,” IEEE Access, vol. 10, pp. 78 242–78 252, 2022, doi: 10.1109/ACCESS.2022.3174599.
[6] S. Safdar, M. Rizwan, T. R. Gadekallu, A. R. Javed, M. K. I. Rahmani, K. Jawad, and S. Bhatia, “Bio-imaging-based machine learning algorithm for breast cancer detection,” Diagnostics, vol. 12, no. 5, p. 1134, 2022, doi: 10.3390/diagnostics12051134.
[7] R. Taimourei-Yansary, M. Mirzarezaee, M. Sadeghi, and B. Nadjar Araabi, “Predicting invasive disease-free survival time in breast cancer patients using semi-supervised graph-based machine learning techniques,” Soft Comput. J., vol. 10, no. 1, pp. 48–69, 2021, doi: 10.22052/scj.2022.243330.1039 [In Persian].
[8] A. Khodaei and B. Mozaffary Tazeh-Kand, “An innovative approach in order for discrimination of cancer and non-cancer dna sequences by lpc and svd based algorithms,” Soft Comput. J., vol. 3, no. 2, pp. 42–53, 2015, dor: 20.1001.1.23223707.1393.3.2.57.0 [In Persian].
[9] M. Eftekharian, A. Nodehi, and R. Enayatifar, “Improved noise reduction, segmentation, and classification of cancer masses by quantum inverse-matched filter, social spider algorithm, and improved elm,” Soft Comput. J., vol. 10, no. 1, pp. 70–89, 2021, doi: 10.22052/scj.2022.243230.1018 [In Persian].
[10] M. Togacar, B. Ergen, and Z. Comert, “Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders,” Med. Hypotheses, vol. 135, p. 109503, 2020, doi: 10.1016/j.mehy.2019.109503.
[11] R. Resmini, L. F. da Silva, A. S. Araújo, P. R. T. Medeiros, D. C. Muchaluat-Saade, and A. Conci,“Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography,” Sensors, vol. 21, no. 14, p. 4802, 2021, doi: 10.3390/S21144802.