Content-based image retrieval using support vector machine and texture difference histogram features

Document Type : Original Article

Authors

1 Dep. Science, University of Science and Technology of Mazandaran, Behshahr, Iran

2 Faculty of Engineering, Shahrood Institute of Higher Education, Shahrood, Iran

3 Faculty of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran

Abstract

Due to the progress of the digital image world and increasing numbers, preparing a system for image retrieval is essential. A content-based image retrieval system should find similar images to the image searched by a user. In this paper, a novel content-based image retrieval system is proposed. Considering the importance of texture in an image, we introduce a new feature as the histogram of the texture difference in the equal edge orientation. Then, the expressed features are extracted from training images in the proposed system. Then these features are learned using a support vector machine. The proposed system is examined using the standard WANG database. The results show the efficiency of the proposed system in retrieving images compared to similar methods.

Keywords


[1] Y. Liu, D. Zhang, G. Lu, and W. Ma, “A survey of content-based image retrieval with high-level semantics,” Pattern Recognit., vol. 40, pp. 262-282, 2006, doi: 10.1016/j.patcog.2006.04.045.
[2] N. Ghosh, S. Agrawal, and M. Motwani, “A survey of feature extraction for content-based image retrieval system,” Proc. Int. Conf. Recent Adv. Comput. Commun., vol. 34, pp. 305-313, 2018, doi: 10.1007/978-981-10-8198-9_32.
[3] Y. Rui, T.S. Huang, and S.F. Change, “Image Retrieval: Current Techniques, Promising Directions and Open Issues,” J. Vis. Commun. Image Represent., vol. 10, pp. 39-62, 1999, doi: 10.1006/jvci.1999.0413.
[4] R. Datta, D. Joshi, Z. Li, and J.Z. Wang, “Image Retrieval: Ideas, Influences, and Trends of the New Age,” ACM Comput. Surv., vol. 40, pp. 1-60, 2008, doi: 10.1145/1348246.1348248.
[5] F. Long, H. Zhang, and D.D. Feng, Fundamentals of Content-Based Image Retrieval, Signals and Communication Technology. Springer, 2003, doi: 10.1007/978-3-662-05300-3_1.
[6] X. Li, S.C. Chen, M.L. Shyu, and B. Furht, “Image Retrieval by color, Texture, and Spatial Information,” in 8th Int. Conf. Distrib. Multimedia Syst., California, USA: 8, pp. 159-152, 2002.
[7] J. Muwei, D. Junyu, and T. Ruichun, “Image Combining Color, Texture and Region with Objects of user’s Interest for Content-Based Image Retrieval,” 8th ACIS Int. Conf. Softw. Eng. Artif. Intell., Netw. Parallel/Distrib. Comput., IEEE Computer Society, 2007, doi: 10.1109/SNPD.2007.104.
[8] H. Qazanfari, H. Hassanpour, and K. Qazanfari, “A short-term learning framework based on relevance feedback for content-based image retrieval,” 2017 3rd Iranian Conf. Intell. Syst. and Signal Proc. (ICSPIS), Shahrood, pp. 136-140, 2017. 
[9] D.T. Quynh, H.Q. Nguyen, and A.H. Son, “Image Retrieval Uses SVM-Based Relevant Feedback for Imbalance and Small Training Set,” IEEE-RIVF Int. Conf. Comput. Commun. Technol., IEEE, pp. 1-6, 2019.
[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE trans. pattern anal. Mach. Intel., vol. 39, pp. 2481-2495, 2017, doi: 10.1109/TPAMI.2016.2644615.
[11] S. Bose, A. Pal, J. Mallick, S. Kumar, and P. Rudra, “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215, 2015.
[12] M. Sardari, A. Monadjemi, and K. Jamshidi, “A concept based model for image retrieval systems,” Comput. Electr. Eng., vol. 46, pp. 303-313, 2015, doi: 10.1016/j.compeleceng.2015.06.018.
[13] M. Sardari, A. Monadjemi, and K. Jamshidi, “A semantic model for general purpose content-based image retrieval systems,” Comput. Electr. Eng., vol. 40, pp. 2062-2071, 2017, doi: 10.1016/j.compeleceng.2014.07.008.
[14] A. Dayma, A. Shrivastava, A.K. Saxena, and M. Manoria, “Support Vector Machine (Linear Kernel) and Interactive Genetic Algorithm-Based Content Image Retrieval Technique,” Proc. Int. Conf. Recent Adv. Comput. Commun., Springer, Singapore, vol. 34, pp. 151-159, 2018, doi: 10.1007/978-981-10-8198-9_16.
[15]  A. Huneiti and D. Maisa, “Content-based image retrieval using SOM and DWT,” J. softw. Eng. Appl., vol. 8, pp. 51-61, 2015, doi: 10.4236/jsea.2015.82007.
[16] G. Carneiro, A.B. Chan, P.J. Moreno, and N. Vasconcelos, “Supervised learning of semantic classes for image annotation and retrieval,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 29, pp. 394-410, 2007, doi: 10.1109/TPAMI.2007.61
[17] W. Yang, X. Yin, and G.S. Xia, “Learning high-level features for satellite image classification with limited labeled samples,” IEEE Trans. Geosci. Remote Sens., vol. 53, pp. 4472-4482, 2015, doi: 10.1109/TGRS.2015.2400449.
[18] K.A. Heller and Z. Ghahramani, “A simple Bayesian framework for content-based image retrieval,” in Comput. Vis. Pattern Recognit., 2006 IEEE Computer Society Conference on, pp. 2110-2117, 2006, doi: 10.1109/CVPR.2006.41.
[19] S. Bose, A. Pal, J. Mallick, S. Kumar, and P. Rudra, “A Hybrid Approach for Improved Content-based Image Retrieval using Segmentation,” arXiv preprint arXiv: 1502.03215. 2015.
[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 3431-3440, 2015, doi: 10.1109/CVPR.2015.7298965.
[21] X. Meng, Y. An, J. He, Z. Zhuo, H. Wu, and X. Gao, “Similar image retrieval only using one image,” Optik-Int. J. Light Electron Optics, vol. 127, pp. 141-144, 2016, doi: 10.1016/j.ijleo.2015.10.041.
[22]  Y.Y. Xu, “Multiple-instance learning based decision neural networks for image retrieval and classification,” Neurocomputing, vol. 171, pp. 826-836, 2016, doi: 10.1016/j.neucom.2015.07.024.
[23] M. Thilagam and K. Arunish, “Content-based image retrieval techniques: A review,” in Int. Conf. Intell. Comput. Commun. Smart World (I2C2SW), pp. 106-110, 2018.
[24] S. Kastner and L.G. Ungerleider, “The neural basis of biased competition in human visual cortex,” Neuropsychologia, vol. 39, pp. 1263-1276, 2001, doi: 10.1016/s0028-3932(01)00116-6.
[25] S. Razzaghzadeh, P. Norouzi Kivi, and B. Panahi, “A hybrid algorithm based on Gossip architecture using SVM for task scheduling in cloud computing,” Soft Comput. J., vol. 9, no. 2, pp. 84-93, 2020, doi: 10.22052/scj.2021.242822.0 [In Persian].
[26] H. Veisi, H.R. Ghaedsharaf, and M. Ebrahimi, “Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features,” Soft Comput. J., vol. 8, no. 1, pp. 70-85, 2019, doi: 10.22052/8.1.70 [In Persian].
[27] A. Vasighi-Zaker and S. Jalili, “Candidate disease gene prediction using One-Class classification,” Soft Comput. J., vol. 4, no. 1, pp. 74-83, 2015, dor: 20.1001.1.23223707.1394.4.1.60.8 [In Persian].
[28] C. Hsu and C. Lin, “A comparison of methods for multiclass support vector machines,” IEEE trans. Neural Netw., vol. 13, pp. 415-425, 2002, doi: 10.1109/72.991427.
[29] Dataset (2020. Jun. 21), Dataset [Online]. Available: http://smartcbir.nph-co.ir/datasets.php.
[30] S. Kaur and D. Aggarwal, “Image Content Based Retrieval System using Cosine Similarity for Skin Disease Images,” Adv. Comput. Sci. Int. J., vol. 2, pp. 89-95, 2013.
[31] A. Ajam, M. Forghani, M.M. Alyan-Nezhadi, H. Qazanfari, and Z. Amiri, “Content-based Image Retrieval Using Color Difference Histogram in Image Textures,” 5th Iranian Conf. Signal Proc. Intell. Syst. (ICSPIS), Shahrood, Iran, vol. 5, pp. 1-6, 2019, doi: 10.1109/ICSPIS48872.2019.9066062.
[32] M. Alyan-Nezhadi, H. Qazanfari, A. Ajam, and Z. Amiri, “Content-based Image Retrieval Considering Colour Difference Histogram of Image Texture and Edge Orientation,” Int. J. Eng., vol. 33, pp. 949-958, 2020, doi: 10.5829/IJE.2020.33.05B.28.