A novel method for extracting blood vessels in digital retinal images

Document Type : Original Article

Author

Department of Computer Engineering, Faculty of Computer Engineering, Yazd University, Yazd, Iran.

Abstract

Diabetic retinopathy is one of the most common causes of blindness in the world. The identification of blood vessels from retinal images plays a crucial role in diagnosing eye diseases such as diabetic retinopathy. Manual extraction of blood vessels by physicians is a time-consuming and challenging process that is prone to errors due to its dependence on individuals. Detecting small veins in retinal images is particularly difficult owing to their low contrast and rotation. In this paper, a new method for extracting blood vessels from digital retinal images is presented. This method consists of three main parts: noise removal in retinal images, extraction of vessel centerlines, and finally, extraction of blood vessels using the method of expanding the area and removing the noise. To evaluate the performance of the proposed algorithm, it is applied to images of the DRIVE test set. The mean accuracy, sensitivity, and specificity values of the proposed method are obtained as 0.96578, 0.92896, and 0.98965, respectively.

Keywords


[1] Jafari M., "Internet of Things in eye diseases using smart glasses", International Journal of Engineering Education, 9: 1034–1042, 2017.
[2] Mane,D., Londhe N., Patil N., Patil O., and Vidhate P., "A Survey on Diabetic Retinopathy Detection Using Deep Learning", Data Engineering for Smart Systems. Springer, 238: 621-637, 2022.‏ https://doi.org/10.1007/978-981-16-2641-8_59.
[3] Ji L., Tian H., Webster K. A., and Li W., "Neurovascular regulation in diabetic retinopathy and emerging therapies", Cellular and Molecular Life Sciences, 78: 5977-5985, 2021. https://doi.org/10.1007/s00018-021-03893-9.
[4] Antonetti D. A., Silva P. S., and Stitt A. W., "Current understanding of the molecular and cellular pathology of diabetic retinopathy." Nature Reviews Endocrinology, 17(4): 195-206, 2021. https://doi.org/10.1038/s41574-020-00451-4.
[5] Li H. and Zheng M., "Analysis of optic disc and macular vascular density in patients with non-proliferative diabetic retinopathy", American Journal of Translational Research, 13(8): 9160–9167, 2021.‏
[6] Ranjit G., Saha A., and Das S., "An Improved Vessel Extraction Scheme from Retinal Fundus Images", Multimedia Tools and Applications, 78(18): 25221–25239, 2019. https://doi.org/10.1007/s11042-019-7719-9.
[7] Prouski G., Jafari M., and Zarrabi H., "Internet of Things in Eye Diseases, Introducing a New Smart Eyeglasses Designed for Probable Dangerous Pressure Changes in Human Eyes." International Conference on Computer and Applications, 364–368, 2017. https://doi.org/10.1109/COMAPP.2017.8079762.
[8] Crabtree G. S. and Chang J. S., "Management of complications and vision loss from proliferative diabetic retinopathy", Current diabetes reports, 21(9): 1-8, 2021. https://doi.org/10.1007/s11892-021-01396-2.
[9] American Diabetes Association, (online): https://dyabetes.com/Article/7/10noticesdiabetesEyes, visited on 26 February, 2021.
[10] Soomro T. A., Afifi A. J., Gao J., Hellwich O., Zheng L., and Paul M., "Strided Fully Convolutional Neural Network for Boosting the Sensitivity of Retinal Blood Vessels Segmentation", Expert Systems with Applications, 134: 36–52, 2019. https://doi.org/10.1016/j.eswa.2019.05.029.
[11] Nguyen U. T. V., Bhuiyan A., Park L. A. F., and Ramamohanarao K., "An Effective Retinal Blood Vessel Segmentation Method Using Multi-Scale Line Detection", Pattern Recognition, 46(3): 703–715, 2013. https://doi.org/10.1016/j.patcog.2012.08.009.
[12] هویدا ف.، شاه‌بهرامی ا.، «ارزیابی کارایی تشخیص جعل کپی-انتقال تصاویر مبتنی بر بلاک‌بندی»، مجله محاسبات نرم، جلد 7، شماره 1، ص. 79-62، 1397.
[13] Emary E., Zawbaa H. M., Hassanien A. E., and Parv B., "Multi-Objective Retinal Vessel Localization Using Flower Pollination Search Algorithm with Pattern Search", Advanced Data Analysis and Classification, 11(3): 611–627, 2017. https://doi.org/10.1007/s11634-016-0257-7.
[14] Al Shehhi R., Marpu P. R., and Woon W. L.,"An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images", Mathematical Problems in Engineering, pp. 1–15, 2016. https://doi.org/10.1155/2016/7906165.
[15] Singh N. P. and Srivastava R., "Retinal Blood Vessels Segmentation by Using Gumbel Probability Distribution Function Based Matched Filter", Computer Methods and Programs in Biomedicine, 129: 40–50, 2016. https://doi.org/10.1016/j.cmpb.2016.03.001.
[16] Liskowski P. and Krawiec K., "Segmenting Retinal Blood Vessels with Deep Neural Networks", IEEE Transactions on Medical Imaging, 35(11): 2369–2380, 2016. https://doi.org/10.1109/TMI.2016.2546227.
[17] Oliveira W. S., Teixeira J. V., Ren T. I., Cavalcanti G. D. C., and Sijbers J., "Unsupervised Retinal Vessel Segmentation Using Combined Filters", PLOS ONE, 11(2): 1–21, 2016. https://doi.org/10.1371/journal.pone.0149943.
[18] Abdellahoum H., Mokhtari N., Brahimi A., and Boukra A., "CSFCM: An Improved Fuzzy C-Means Image Segmentation Algorithm Using a Cooperative Approach", Expert Systems with Applications, 166: 114063–114085, 2021. https://doi.org/10.1016/j.eswa.2020.114063.
[19] Imani E., Javidi M., Pourreza H., "Improvement of Retinal Blood Vessel Detection Using Morphological Component Analysis", Computer Methods and Programs in Biomedicine, 118(3): 263–279, 2015. https://doi.org/10.1016/j.cmpb.2015.01.004.
[20] Mishra S., Chen D. Z., and Hu X. S., "A data-aware deep supervised method for retinal vessel segmentation", 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1254–1257, 2020. https://doi.org/10.1109/ISBI45749.2020.9098403.
[21] Wang D., Haytham A., Pottenburgh J., Saeedi O., and Tao Y., "Hard attention net for automatic retinal vessel segmentation", IEEE Journal of Biomedical and Health Informatics, 24(12): 3384–3396, 2020. https://doi.org/10.1109/JBHI.2020.3002985.
[22] Uysal E. and Güraksin G. E., "Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks", Multimedia Tools and Applications, 80(3): 3505–3528, 2021. https://doi.org/10.1007/s11042-020-09372-w.
[23] Oliveira A., Pereira S., and Silva C. A., "Retinal vessel segmentation based on Fully Convolutional Neural Networks," Expert Systems with Applications, 112: 229–242, 2018. https://doi.org/10.1016/j.eswa.2018.06.034.
[24] Dai P., Luo H., Sheng H., Zhao Y., Li L., Wu J., Zhao Y., and Suzuki K., "A new approach to segment both main and peripheral retinal vessels based on gray-voting and gaussian mixture model", PLoS ONE, 10(6): 1–22, 2015. https://doi.org/10.1371/journal.pone.0127748
[25] شاه‌بیک ص.، پورقاسم ح.، «استخراج رگ‌های خونی تصاویر شبکیه با استفاده از تبدیل نسل جدید کرولت و عملگرهای مورفولوژی وزن‌دار شده وفقی»، هوش محاسباتی در مهندسی برق، دوره 3، شماره 4، ص. 76-63، 1391.
[26] خرقانیان ر.، احمدی‌فرد ع.، «استخراج خطوط مرکزی رگ‌های شبکیه چشم با استفاده از ویژگی‌های توپوگرافیکی و فیلترهای جهت‌دار»، سیستم‌های هوشمند در مهندسی برق، دوره 3، شماره 1، ص. 28-17، 1391.
[27] محمدی م.، نجاتی ف.، «نشان‌نگاری با رویکرد تجزیه ماتریسی هسنبرگ»، مجله محاسبات نرم، جلد 9، شماره 1، ص. 157-146، 1399.
[28] میرزاخانی ع.، محمدپور م.، «تشخیص تخریب دیسک بین مهره‌ای کمر با استفاده از تصاویر MRI»، مجله محاسبات نرم، جلد 9 ،شماره 1، ص. 123ـ114، 1399.
[29] DRIVE Image database, (online): www.isi.uu.nl/Research/Databases/DRIVE, visited on 2022.